• Lamia Medouni Haroune Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
  • Farid Zaidi Département des Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
  • Sonia Medouni-adrar Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
  • Mouloud Kecha Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie


In this article, an overview of treatment alternatives of olive pomace that is olive oil mill waste are covered. Olive pomace characteristics, the new treatments for improving the extraction of olive oil are mentioned. Attention is drawn to present-day applications of olive pomace. The search concerning the improving of the nutritional value of olive pomace is referred, focusing, on biological treatment with microorganisms in liquid and solid-state fermentation.

Keywords: Olive pomace, Biotreatment, Valorisation


Hanene G, Aouadhi C, Hamrouni S, Mnif W. Antibacterial, antifungal and antioxidant activities of tunisian olea europea ssp. fruti pulp and its essential fatty acids. Int J Pharm Pharm Sci 2015;7:52–5.
2. Gomez Munoz B, Hatch DJ, Bol R, Garcia Ruiz R. The compost of olive mill pomace: from a waste to a resource–environmental benefits of its application in olive oil groves. World's Larg Sci Technol Med Open Access B Publ 2012. p. 459–84.
3. International Olive Council. Production mondiale d’huile d’olive; 2017. Available from: https://www.scoop.it/t/olive-news?r=0.00505805164182993#post_4012160171. [Last accessed on 20 Jun 2018].
4. Alburquerque J. Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour Technol 2004;9:195–200.
5. Roig A, Cayuela ML, Sanchez Monedero MA. An overview on olive mill wastes and their valorisation methods. Waste Manag 2006;26:960–9.
6. Neifar M, Jaouani A, Ayari A, Abid O, Ben H, Boudabous A, Najar T, et al. Improving the nutritive value of olive cake by solid state cultivation of the medicinal mushroom Fomes fomentarius. Chemosphere 2013;91:110–4.
7. Pagnanelli F, Viggi CC, Toro L. Development of new composite biosorbents from olive pomace wastes. Appl Surf Sci 2010;256:5492–7.
8. Yucel Y. Optimization of immobilization conditions of Thermomyces lanuginosus lipase on olive pomace powder using response surface methodology. Biotechnology 2012;1:39–44.
9. Michailides M, Christou G, Akratos CS, Tekerlekopoulou AG, Vayenas DV. Composting of olive leaves and pomace from a three-phase olive mill plant. Int Biodeterior Biodegradation 2011;65:560–4.
10. Curran MA. Life cycle assessment in the agri-food sector: case studies, methodological issues, and best practices. Int J Life Cycle Assess 2016;21:785–7.
11. Azbar N, Bayram A, Filibeli A, Muezzinoglu A, Sengul F, Ozer A. A review of waste management options in olive oil production. Crit Rev Environ Sci Technol 2004;34:209–47.
12. Tsagaraki E, Lazarides HN, Petrotos KB. Olive mill wastewater treatment. Util By-Products Treat Waste Food Ind; 2004. p. 133–57.
13. Oreopoulou V, Russ W. Utilization of by-products and treatment of wast in the food industry. Iseki-food series series. Springer; 2007.
14. Niaounakis M, Halvadakis CP. Olive processing waste management. Literature Review and Patent Survey. Vol. 2nd editio. Waste Management Series 5; 2006. p. 517.
15. Cappelletti GM, Grilli L, Nicoletti GM, Russo C. Innovations in the olive oil sector: a fuzzy multicriteria approach. J Clean Prod 2017;159:95–105.
16. Bensemmane A. Le trait d'union des opérateurs économiques pour le renouveau du monde agricole et rural; 2009. Available from: http://filaha-dz.com/Filahainove/revue4.pdf. [Last accessed on 20 Jun 2018].
17. Bejaoui MA, Sanchez Ortiz A, Sanchez S, Jimenez A, Beltran G. The high power ultrasound frequency: effect on the virgin olive oil yield and quality. J Food Eng 2017;207:10–7.
18. Juliano P, Bainczyk F, Swiergon P, Supriyatna MIM, Guillaume C, Ravetti L, et al. Extraction of olive oil assisted by high-frequency ultrasound standing waves. Ultrason Sonochem 2017;38:104–14.
19. Sari HA, Ekinci R, Hadj-Taieb N, Grati N, Ayadi M, Attia I, et al. Microwave and megasonics combined technology for a continuous olive oil process with enhanced extractability. Biochem Eng J 2017;42:79–85.
20. Leone A, Romaniello R, Tamborrino A, Xu XQ, Juliano P. Microwave, and megasonics combined technology for a continuous olive oil process with enhanced extractability. Innov Food Sci Emerg Technol 2017;42:56–63.
21. Cruz S, Yousfi K, Oliva J, García JM. Heat treatment improves olive oil extraction. J Am Oil Chem Soc 2007;84:1063–8.
22. Hadj Taieb N, Grati N, Ayadi M, Attia I, Bensalem H, Gargouri A. Optimisation of olive oil extraction and minor compounds content of Tunisian olive oil using enzymatic formulations during malaxation. Biochem Eng J 2012;62:79–85.
23. Squeo G, Silletti R, Summo C, Paradiso VM, Pasqualone A, Caponio F. Influence of calcium carbonate on extraction yield and quality of extra virgin oil from olive (Olea europaea L. cv. Coratina). Food Chem 2016;209:65–71.
24. Tamborrino A, Squeo G, Leone A, Paradiso VM, Romaniello R, Summo C, et al. Industrial trials on coadjuvants in olive oil extraction process: Effect on rheological properties, energy consumption, oil yield and olive oil characteristics. J Food Eng 2017;205:34–46.
25. Al-Otoom A, Al-Asheh S, Allawzi M, Mahshi K, Alzenati N, Banat B, Alnimr B. Extraction of oil from uncrushed olives using supercritical fluid extraction method. J Supercrit Fluids 2014;95:512–8.
26. Romaniello R, Leone A, Tamborrino A. Specification of a new de-stoner machine: evaluation of machining effects on olive paste’s rheology and olive oil yield and quality. J Sci Food Agric 2017;97:115–21.
27. Ferhat R, Laroui S, Zitouni B, Lekbir A, Abdeddaim M, Smaili N, et al. Experimental study of solid waste olive’s mill: extraction modes optimization and physicochemical characterization. J Nat Prod Plant Resour 2014;4:16–23.
28. La Rubia Garcia MD, Yebra Rodriguez I, Eliche Quesada D, Corpas Iglesias FA, Lipez Galindo A. Assessment of olive mill solid residue (pomace) as an additive in lightweight brick production. Constr Build Mater 2012;36:495–500.
29. Meziane S. Modélisation de la cinetique du sechage convectif du grignon d’olive. Revue Des Energies Renouvelables 2013; 16:379–87.
30. Kostelenos G, Kiritsakis A. Olive tree history and evolution; 2017. p. 1–12.
31. De La Casa JA, Castro E. Recycling of washed olive pomace ash for fired clay brick manufacturing. Constr Build Mater 2014;61:320–6.
32. Tada ZMS, Faid IAKIM, Hassani S, Salmaoui S. Caractérisation physico-chimique et microbiologique des grignons d ’ olive de 26 huileries traditionnelles de la région de beni mellal (Maroc) physicochemical and microbiological characterization of the olive residue of 26 traditional oil mills in beni. Desalination 2010;5:4–9.
33. Bhanu DRC, Sabu KK. Fatty acid composition of the fruits of Syzygium Zeylanicum (L.) DC. VAR. Zeylanicum. Int J Curr Pharm Res 2017;9:8–10.
34. Ramachandran S, Singh SK, Larroche C, Soccol CR, Pandey A. Oil cakes and their biotechnological applications-a review. Bioresour Technol 2007;98:2000–9.
35. Yansari A, Sadeghi H, Ansari Pirsarai Z, Mohammad Zadeh H. Ruminal after, dry matter and nutrient degradability of different olive cake by-products incubation in the rumen using nylon bag technique. Int J Agric Biol 2007;9:439–42.
36. Brozzoli V, Bartocci S, Terramoccia S, Conto G, Federici F, Annibale AD, et al. Stoned olive pomace fermentation with Pleurotus species and its evaluation as a possible animal feed. Enzyme Microb Technol 2010;46:223–8.
37. Barbanera M, Lascaro E, Stanzione V, Esposito A, Altieri R, Bufacchi M. Characterization of pellets from mixing olive pomace and olive tree pruning. Renew Energy 2016;88:185–91.
38. Miranda T, Arranz JI, Montero I, Román S, Rojas CV, Nogales S. Characterization and combustion of olive pomace and forest residue pellets. Fuel Process Technol 2012;103:91–6.
39. Leite P, Manuel J, Venâncio A, Manuel J, Belo I. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresour Technol 2016;214:737–46.
40. Montero I, Miranda T, Arranz JI, Rojas CV. Thin layer drying kinetics of by-products from olive oil processing. Int J Mol Sci 2011;12:7885–97.
41. Michele I, Elisa N, Rosaria D, Tiziana D, Primo P, Luigi N, et al. Effects of olive pomace amendment on soil enzyme activitiesnnangi. Appl Soil Ecol 2017;119:242–9.
42. Aparicio R, Conte LS, Fiebig HJ. Handbook of olive oil. Handbook Olive Oil Analysis and Properties; 2013. p. 589-653.
43. Proietti P, Federici E, Fidati L, Scargetta S, Massaccesi L, Nasini L, et al. Effects of amendment with oil mill waste and its derived-compost on soil chemical and microbiological characteristics and olive (Olea europaea L.) productivity. Agric Ecosyst Environ 2015;207:51–60.
44. Yacoub MR, Lemière C, Labrecque M, Malo JL. Occupational asthma due to bethabara wood dust. Allergy Eur J Allergy Clin Immunol 2005;60:1544–5.
45. Topal H, Atimtay AT, Durmaz A. Olive cake combustion in a circulating fluidized bed. Fuel 2003;82:1049–56.
46. Hammad M, Badarneh D, Tahboub K. Evaluating variable organic waste to produce methane. Energy Convers Manag 1999;40:1463–75.
47. Stasinakis AS, Elia I, Petalas AV, Halvadakis CP. Removal of total phenols from olive-mill wastewater using an agricultural. J Hazard Mater 2008;160:408–13.
48. Esteve C, Marina ML, Garcia MC. A novel strategy for the revalorization of olive (Olea europaea) residues based on the extraction of bioactive peptides. Food Chem 2015;167:272–80.
49. Russo C, Cappelletti GM, Nicoletti GM, Di Noia AE, Michalopoulos G. Comparison of European olive production systems. Sustain 2016;8:1–11.
50. Ouazzane H, Laajine F, El Yamani M, El Hilaly J, Rharrabti Y, Amarouch MY, et al. Olive mill solid waste characterization and recycling opportunities: a review. J Mater Environ Sci 2017;8:2632–50.
51. Laaboudi W, Ghanam J, Ghoumari O, Sounni F, Merzouki M, Benlemlih M. Hypoglycemic and hypolipidemic effects of phenolic olive tree extract in streptozotocin diabetic rats. Int J Pharm Pharm Sci 2016;8:287–91.
52. Dashti N, Ali N, Khanafer M, Al-Awadhi H, Sorkhoh N, Radwan S. Olive-pomace harbors bacteria with the potential for hydrocarbon-biodegradation, nitrogen-fixation and mercury-resistance: Promising material for waste-oil-bioremediation. J Environ Manage 2015;155:49–57.
53. Perraud Gaime, Isabelle Labrousse Y, Roussos S. Conservation des résidus de l'agro-industrie oléicole par ensilage : de l'isolement de bactéries lactiques endogènes à l'étude de faisabilite olivebioteq; 2009. p. 308–12.
54. Nefzaoui A, Abdouli H, Ksair H. Seminaire international sur la vlorisation des sous produits de l’olivier. FAOPNUD, Monastir, Tunisie; 1981. p. 67–72.
55. Nefzaoui A, Marchaud S, Vanbelle M. Valorisation de la pulpe d’olive dans l’alimentation des ruminants. In: Tropical animal production for the benefit of man. International colloquium, Antwerp, Belgium; 1982. p. 309–14.
56. Nefzaoui A, Hellings P, Vanbelle M. Ensiling olive pulp with ammonia: Effects on volontary intake and digestibility measured by sheep. 34th. Annual Meeting of the study commission EAAP Madrid; 1983.
57. Aliakbarian B, Casazza AA, Perego P. Valorization of olive oil solid waste using high pressure– high-temperature reactor. Food Chem 2011;128:704–10.
58. Goula AM, Gerasopoulos D. Integrated olive mill waste (OMW) processing towards complete by-product recovery of functional components. Olives Olive Oil as Funct Foods Bioactivity, Chem Process; 2017. p. 177–204.
59. Rizzi V, D’Agostino F, Fini P, Semeraro P, Cosma P. An interesting environmental friendly cleanup: the excellent potential of olive pomace for disperse blue adsorption/desorption from wastewater. Dye Pigment 2017;140:480–90.
60. Mavros M, Xekoukoulotakis NP, Mantzavinos D, Diamadopoulos E. Complete treatment of olive pomace leachate by coagulation, activated-carbon adsorption and electrochemical oxidation. Water Res 2008;42:2883–8.
61. Paraskeva P, Diamadopoulos E. Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis. J Chem Technol Biotechnol 2006;82:1115–21.
62. Borello D, De Caprariis B, De Filippis P, Di Carlo A, Marchegiani A, Pantaleo AM, et al. Thermo-economic assessment of a olive pomace gasifier for cogeneration applications. Energy Procedia 2015;75:252–8.
63. Brachi P, Miccio F, Miccio M, Ruoppolo G. Isoconversional kinetic analysis of olive pomace decomposition under torrefaction operating conditions. Fuel Process Technol 2015;130:147–54.
64. Abid O, Najar T, Ghorbel R, Ben romdhane A. Effect of fungal treatment by solid-state fermentation on the nutritive value of olive cake. Renc Rech Ruminants 2014;21:170.
65. Fadel M, Helmy El-Ghonemy D. Biological fungal treatment of olive cake for better utilization in ruminants nutrition in Egypt. Int J Recycl Org Waste Agric 2015;4:261–71.
66. Haddadin M, Al-Natour R, Al-Qsous S, Robinson R. Bio-degradation of lignin in olive pomace by freshly-isolated species of a basidiomycete. Bioresour Technol 2002;82:131–7.
67. Haddadin MS, Abdulrahim SM, Al-Khawaldeh GY, Robinson RK. Solid state fermentation of waste pomace from olive processing. J Chem Technol Biotechnol 1999;74:613–8.
68. Haddadin MSY, Haddadin J, Arabiyat OI, Hattar B. Biological conversion of olive pomace into compost by using Trichoderma harzianum and Phanerochaete chrysosporium. Bioresour Technol 2009;100:4773–82.
69. Salhi MO. Valorisation de sous-produits et déchets lignocellulosiques par culture de microorganismes cellulolytiques. Insitut national agronomique El-harrache; 2004.
70. Medouni Haroune L, Zaidi F, Medouni Adrar S, Kernou ON, Azzouz S, Kecha M. bioconversion of olive pomace by the submerged cultivation of Streptomyces sp. S1M3I. Proc Natl Acad Sci India Sect B Biol Sci; 2017. p. 1–9.
71. Alcaide EM, Ruiz DY, Moumen A, Mart I. Chemical composition and nitrogen availability for goats and sheep of some olive by-products. Small Rumin Res 2003;49:329–36.
72. Voguel HC, Todaro CL. Fermentation and Biochemical Engineering Handbook. Elem Treatise Phys Exp Appl; 1996. p. 136–475.
73. Medouni Haroune L, Zaidi F, Medouni Adrar S, Roussos S, Azzouz S, Desseaux V, et al. Selective isolation and screening of actinobacteria strains producing lignocellulolytic enzymes using olive pomace as substrate. Iran J Biotechnol 2017;15:74–7.
74. Shabtay A, Hadar Y, Eitam H, Brosh A, Orlov A, Tadmor Y, et al. The potential of Pleurotus-treated olive mill solid waste as cattle feed. Bioresour Technol 2009;100:6457–64.
199 Views | 392 Downloads
How to Cite
Haroune, L., Zaidi, F., Medouni-adrar, S., & Kecha, M. (2018). OLIVE POMACE: FROM AN OLIVE MILL WASTE TO A RESOURCE, AN OVERVIEW OF THE NEW TREATMENTS. Journal of Critical Reviews, 5(6), 1-6. https://doi.org/10.22159/jcr.2018v5i5.28840
Life Sciences