• Shivshankar R. Mane Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 India


Polymeric drug delivery vehicles are known for the controlled release of the drug. More importantly, stimuli-responsive systems are emerged as a suitable platform for targeted drug delivery system, due to its properties such as low toxicity, improved patient compliance, and convenience. In the present article, an overview of the hydrazone linker used in drug delivery is discussed. Particularly, the role of hydrazone linker in anti-cancer drug delivery system is elaborated, as the hydrazone linker gets cleaved under cancerous cell environment at pH 5.

Keywords: Polymer, Linkers, Stimuli-Responsive, Drug Delivery, Micelle


1. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev 1999;99:3181-98.
2. Kost J, Langer R. Responsive polymeric delivery systems. Adv Drug Delivery Rev 2001;46:125-48.
3. Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 2004;29:1173-22.
4. Reddy NBH, Rauta PR, Venkatalakshmi V, Swamy S. Synthesis and characterization of novel SA-PA-LSA/C-30B/AG nanocomposites for swelling, antibacterial, drug delivery, and anticancer applications. Asian J Pharm Clin Res 2018;11:329-38.
5. Ulbrich K, Subr V. Polymeric anticancer drugs with pH-controlled activation. Adv Drug Delivery Rev 2004;56:1023-50.
6. Larson N, Ghandehari H. Polymeric conjugates for drug delivery. Chem Mater 2012;24:840-53.
7. Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 2010;49:6288-308.
8. Paik BF, Mane SR, Jia X, Kiick KL. Responsive hybrid (poly)peptide–polymer conjugates. J Mater Chem B 2017;5:8274-88.
9. Mane SR, Sarkar S, Rao VN, Sathyan A, Shunmugam R. An efficient method to prepare a new class of regioregular graft copolymer via a click chemistry approach. RSC Adv 2015;5:74159-61.
10. Karimi M, Sahandi ZP, Ghasemi A, Amiri M, Bahrami M, Malekzad H, et al. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances. ACS Appl Mater Interfaces 2016;8:21107–33.
11. Paola SM, Vicente JD, Nardecchia S, Marchal JA, Boulaiz H. Thermao-sensitive nanomaterials: recent advances in synthesis and biomedical applications. Nanomaterials 2018;8:935-68.
12. Delcea M, Mohwald H, Skirtach AG. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Dug Delivery Rev 2011;63:730-47.
13. Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Controlled Release 2008;126:187-204.
14. Monika P, Basavraj BV, Chidambara MKN, Ahalya N, Gurudev K. Development of sustained release nanocapsules of catechin-rich extract for enhanced bioavailability. Int J Pharm Pharm Sci 2014;6:331-7.
15. Sing Y, Palombo M, Sinko PJ. Recent trends in targeted anticancer prodrug and conjugate design. Curr Med Chem 2008;15:1802-26.
16. Padilla DeJesus OL, Ihre HR, Gagne L, Freschet JMJ, Szoka FCJ. Polyester dentritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjugate Chem 2002;13:453-61.
17. Eteych T, Jelinkova M, Rihova B, Ulbrich K. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkages: synthesis and preliminary in vitro and in vivo biological properties. J Controlled Release 2001;73:89-102.
18. Gillies ER, Frechet JMJ. pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate Chem 2005;16:361–8.
19. Heller J, Barr J, Ng SY, Starling JJ, Mastro JM. Poly(ortho esters): synthesis characterization, properties and uses. Adv Drug Delivery Rev 2002;54:1015-39.
20. Gillies ER, Frechet JMJ. A new approach towards acid sensitive copolymer micelles for drug delivery. Chem Commun 2003;14:1640–1.
21. Xin Y, Yuan JY. Schiff's base as a stimuli-responsive linker in polymer chemistry. Polym Chem 2012;3:3045-55.
22. Mane SR, Rao NV, Chatterjee K, Dinda H, Nag S, Kishore A, et al. A unique polymeric nano-carrier for anti-tuberculosis therapy. J Mater Chem 2012;22:19639-42.
23. Lee CC, Cramer AT, Szoka FC, Frechet JMJ. An intramolecular cyclization reaction is responsible for the in vivo inefficacy and apparent pH insensitive hydrolysis kinetics of hydrazone carboxylate derivatives of doxorubicin. Bioconjug Chem 2006;17:1364-8.
24. Chen X, Parelkar SS, Henchey E, Schneider S, Emrick T. PolyMPC-doxorubicin prodrugs. Bioconjug Chem 2012; 23:1753-63.
25. Yang X, Grailer JJ, Pilla S, Steeber DA, Gong S. Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy. Bioconjug Chem 2010;21:496-504.
26. Lee S, Saito K, Lee HR, Lee MJ, Shibasaki Y, Oishi Y, et al. Hyperbranched double hydrophilic block copolymer micelles of poly(ethylene oxide) and polyglycerol for pH-responsive drug delivery. Biomacromolecules 2012;13:1190-6.
27. Xiong XB, Lavasanifar A. Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. ACS Nano 2011;5:5202-13.
28. Cui JW, Yan Y, Wang YJ, Caruso F. Templated assembly of ph-labile polymer-drug particles for intracellular drug delivery. Adv Funct Mater 2012;22:4718-23.
29. Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 2005;16:122-30.
30. Bae Y, Nishiyama N, Kataoka K. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug Chem 2007;18:1131-9.
31. Bae Y, Jang WD, Nishiyama N, Fukushima S, Kataoka K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst 2005;1:242-50.
32. Binauld S, Scarano W, Stenzel MH. pH-Triggered release of platinum drugs conjugated to micelles via an acid-cleavable linker. Macromolecules 2012;45:6989-99.
33. Yoo HS, Lee EA, Park TG. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Controlled Release 2002;82:17-27.
34. Rao NV, Mane SR, Kishore A, Das Sarma J, Shunmugam R. Norbornene derived doxorubicin copolymers as drug carriers with pH-responsive hydrazone linker. Biomacromolecules 2012;13:221-30.
35. Mane SR, Chatterjee K, Dinda H, Das Sarma J, Shunmugam R. Stimuli-responsive nanocarrier for an effective delivery of multi-frontline tuberculosis drugs. Polym Chem 2014;5:2725-35.
36. Mane SR, Dinda H, Sathyan A, Das Sarma J, Shunmugam R. Increased bioavailability of rifampicin from stimuli-responsive smart nanocarrier. ACS Appl Mater Interfaces 2014;6:16895-902.
37. Rao NV, Dinda H, Ganivada MN, Das Sarma J, Shunmugam R. Efficient approach to prepare multiple chemotherapeutic agent conjugated nanocarrier. Chem Commun 2014;50:13540-3.
38. Rao NV, Ganivada MN, Sarkar S, Dinda H, Chatterjee K, Dalui T, et al. Magnetic norbornene polymer as multiresponsive nanocarrier for site-specific cancer therapy. Bioconjug Chem 2014;25:276-85.
39. Kalaiselvi K, Mangayarkarasi V, Gomathi NS, Mane SR, Shunmugam R. Luciferase reporter mycobacteriophages for evaluating norbornene-based antituberculosis drug susceptibility testing on mycobacterium tuberculosis. Asian J Pharm Clin Res 2017;10:406-8.
40. Patra D, Mukherjee S, Chakraborty I, Dash TK, Senapati S, Bhattacharyya R, et al. Iron (III) coordinated polymeric nanomaterials: a next-generation theranostic agent for high-resolution T1-weighted magnetic resonance imaging and anticancer drug delivery. ACS Biomater Sci Eng 2018;4:1738-49.
303 Views | 128 Downloads
How to Cite
Mane, S. R. (2019). ADVANCES OF HYDRAZONE LINKER IN POLYMERIC DRUG DELIVERY. Journal of Critical Reviews, 6(2), 1-4.
Applied Sciences