• LALITA DEVI Department of Pharmaceutics, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial, College of Pharmacy, Bela (Ropar)
  • PUNAM GABA Department of Pharmaceutics, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial, College of Pharmacy, Bela (Ropar)


Hydrogels are broadly utilized as of late because of their numerous profitable properties, for example, more water content, greater adaptability, versatility and biocompatibility. Hydrogels are the 3-Dimensional polymeric system structure of hydrophilic polymers which are the center around medication that is discharged in a controlled way. A few medications have low bioavailability hydrogel is used to upgrade the bioavailability of a medication. Hydrogels play an imperative job in tissue designing (transplant cells, ligament, bone and smooth muscle) controlled medication conveyance framework and regenerative drugs, contact lens due to greater biodegradability and biocompatibility. The essential objective of hydrogels is the medication is discharged in a controlled rate and maximum therapeutic effects, limit unfavorable impacts and better patient consistency. The fundamental point of this survey concentrated on the late progression of hydrogel attributes and biomedical applications.

Keywords: Hydrogel, Cross-linking, Drug delivery, Wound dressings


1. Todd RH, Kohane SD. Hydrogels in drug delivery: progress and challenges. Polymer 2008;49:1993-2007.
2. Satturwar PM, Fulzele SV, Dorle AK. Biodegradation and in vivo biocompatibility of rosin: a natural film-forming polymer. AAPS PharmSciTech 2003;4:434-9.
3. Varaprasad K, Raju KM, Manjula B, Varaprasad K. Preparation and characterization of sodium alginate based hydrogels and their in vitro release studies. Adv Polym Technol 2013;32:1-12.
4. Malafaya PB, Silva GA, Reis RL. Natural origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Delivery Rev 2007;59:207-33.
5. Chivate AA, Poddar SS, Abdul S, Savant G. Preparation and characterization of sodium alginate-based hydrogels and their in vitro release studies. Adv Pharm Sci Tech 2008;9:197-204.
6. Ratner BD, Hoffman AS. Synthetic hydrogels for biomedical applications. Chapter 1, Am Chem Soc 1976. p. 1-36.
7. NA Peppas. Hydrogels in medicine and pharmacy. Vol. 1. Fundamentals, Boca Raton FL, CRC Press; 1986. p. 180.
8. Peppas NA, Langer R. New challenges in biomaterials. Science 1984;263:1715-20.
9. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery system. Annu Rev Chem Biomol Eng 2010;1:149-73.
10. Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery. Chem Rev 2012;112:2853-88.
11. Shang J, Le X, Zhang J, Chen T, Theato P. Trends in polymeric shape memory hydrogels and hydroel actuators. Polm Chem 2019;10:1036-55.
12. Flowerlet M, Arya S, Mini A, Nayir SS, Joseph J. Hydrogel-a drug delivery device. Int J Univers Pharm Bio Sci 2014;1:63-78.
13. Das N. Preparation methods and properties of hydrogels: a review. Int J Pharm Pharm Sci 2013;5:112-7.
14. Shetye SP, Godbole A, Bhilegaokar S, Pankaj G. Hydrogels: introduction, preparation, characterization and applications. Int J Reprod Biomed 2015;1:51-5.
15. Dong LC, Hoffman AS, Yan Q. Dextran permeation through poly (N-isopropylacrylamide) hydrogels. J Biomater Sci Polym 1994;5:473-84.
16. Popat BM, Sonali SA. A hydrogels: methods of preparation and applications. Int J Appl Pharm 2017;6:79-85.
17. Devi A, Nautiyal U, Kaur SK. Hydrogels: a smart drug delivery device. APJHS 2014;1:93-4.
18. Nagam SP, Naga JA, Poojitha J, Aruna S, Nadendla RR. A comprehensive review on hydrogels. Int J Chem Pharm Res 2016;8:19-23.
19. Zhao W, Jin X, Cong Y, Liu Y, Fu J. Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 2013;3:327-39.
20. Takashi L, Hatsumi T, Makoto M, Takashi I, Gotoh T, Sakohara S. Synthesis of porous poly (N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci 2007;104:842-50.
21. Vlierberghe SV, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 2011;12:1387-408.
22. Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 2011;8:607-26.
23. Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat Methods 2016;13:405-14.
24. Messing R, Schmidt AM. Perspectives for the mechanical manipulation of hybrid hydrogel. Polymer Chem 2011;1:18.
25. Larisa C, Wu Jiyuan Y, Jindrich K. Hybrid hydrogels self-assembled from graft copolymers containing complementary ?-sheets as hydroxyapatite nucleation scaffolds. Biomaterials 2011;23:5341-53.
26. Maolin Z, Jun L, Min Y, Hongfei H. The swelling behaviour of radiation prepared semi-interpenetrating polymer networks composed of poly NIPA Am and hydrophilic polymers. Rad Phys Chem 2000;58:397-400.
27. Dubrovskii SA, Rakova GV. Elastic and osmotic behavior and network imperfections of nonionic and weakly ionized acrylamide-based hydrogels. Macromolecules 1997;30:7478-86.
28. Refojo MF, Yasuda H. Hydrogels from 2-hydroxyethyl methacrylate and propylene glycol monoacrylate. J Appl Pol Sci 1965;9:2425-35.
29. Jiang BO. Study on PVA hydrogel crosslinked by epichlorohydrin. J Appl Pol Sci 1992;46:783-6.
30. Sargeant TD, Desai AP, Banerjee S, Agawu A, Stopek JB. An in situ forming collagen–PEG hydrogel for tissue regeneration. Acta Biomater 2012;8:124-32.
31. Karadag E, Uzum OB, Saraydin D. Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels. Eur Polym J 2002;38:2133-41.
32. Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Polym Sci 2004;29:1173-222.
33. Ramos J, Forcada J, Hidalgo-Alvarez R. Cationic polymer nanoparticles and nanogels: from synthesis to biotechnological applications. Chem Rev 2013;114:367-428.
34. Ozmen MM, Okay O. Superfast responsive ionic hydrogels with controllable pore size. Polymer 2005;46:8119-27.
35. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Delivery Rev 2008;15:1638-49.
36. Chang C, Duan B, Cai J, Zhang L. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 2010;46:92-100.
37. Katime I, Novoa R, Diaz de Apodaca E, Mendizabal E. Theophylline release from poly (acrylic acid-co-acrylamide) hydrogels. Polym Test 1999;18:559-66.
38. Zheng T, Liang Y, Ye S, Zhongyi He. Superabsorbent hydrogels as carriers for the controlled-release of urea: experiments and a mathematical model describing the release rate. Biosyst Eng 2009;102:44-50.
39. Singh B, Sharma DK, Gupta A. In vitro release dynamics of thiram fungicide from starch and poly (methacrylic acid)-based hydrogels. J Hazard Mater 2008;154:278-86.
40. Manasir N, Kjoniksen AL, Nystrom B. Preparation and characterization of cross-linked polymeric nanoparticles for enhanced oil recovery applications. J Appl Polym Sci 2009;113:1916-24.
41. Chen JP, Chiu SH. A poly (N-isopropylacrylamide-co-N-acryloxysuccinimide-co-2-hydroxyethyl methacrylate) composite hydrogel membrane for urease immobilization to enhance urea hydrolysis rate by temperature swing. Enzyme Microb Technol 2000;26:359-67.
42. Tang Q, Wu J, Sun H, Fan S, De Hu, Jianming Lin. Superabsorbent conducting hydrogel from poly (acrylamide-aniline) with thermosensitivity and release properties. Carbohydr Polym 2008;73:473-81.
43. Li P, Siddaramaiah B, Lee JH, Heo SB. Novel PA Am Laponite clay nanocomposite hydrogels with improved cationic dye adsorption behavior. Com Part B Eng 2008;5:756-63.
44. Kang GD, Cheon SH, Khang G, Song SC. Thermosensitive poly (organophosphazene) hydrogels for controlled drug delivery. Eur J Pharma Biopharm 2006;63:340-6.
45. Nho YC, Mook Lim Y, Moo Lee Y. Preparation, properties and biological application of pH-sensitive poly (ethylene oxide) (PEO) hydrogels grafted with acrylic acid (AAc) using gamma-ray irradiation. Radiat Phys Chem 2004;2:239-42.
46. Censi RV, Vermonden T, Van Steenbergen MJ, Deschout H, Braeckmans K, De Smedt SC, et al. Photopolymerized thermosensitive hydrogels for tailorable diffusion-controlled protein delivery. J Controlled Release 2009;140:230-6.
47. West JLH, Jeffrey A. Photopolymerized hydrogel materials for drug delivery applications. React Polym 1995;25:139-47.
48. Liu H, Wang C, Gao Q, Liu X, Tong Z. Magnetic hydrogels with supracolloidal structures prepared by suspension polymerization stabilized by Fe2O3 nanoparticles. Acta Biomaterial 2009;6:275-81.
49. Zeng J, Shi K, Zhang Y, Sun X, Deng L, Guo X, et al. Synthesis of poly (N-isopropylacrylamide)-b-poly (2-vinyl pyridine) block copolymers via RAFT polymerization and micellization behavior in aqueous solution. J Coll Interf Sci 2008;322:654-9.
50. Wack H, Ulbricht M. Effect of synthesis composition on the swelling pressure of polymeric hydrogels. Polymer 2009;50:2075-80.
51. Yue Y, Sheng X, Wang P. Fabrication and characterization of microstructured and pH sensitive interpenetrating networks hydrogel films and application in drug delivery field. Eur Polym J 2009;2:309-15.
52. Bajpai AK, Giri A. Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. React Funct Polym 2002;53:125-41.
53. Chen Z, Liu M, Ma S. Synthesis and modification of salt-resistant superabsorbent polymers. React Funct Polym 2005;62:85-92.
54. Tomonari O, Kana N, Tadashi N, Seiji K, Nonaka T. Synthesis of hydrogel beads having phosphinic acid groups and its adsorption ability for lanthanide ions. React Funct Polym 2006;66:625-33.
55. Askari F, Nafisi S, Omidian H, Hashemi SA. Synthesis and characterization of acrylic-based superabsorbents. J Appl Polym Sci 1993;50:1851-5.
56. Tomic SLJ, Micic MM, Filipovic JM, Edin HS. Swelling and thermodynamic studies of temperature responsive 2-hydroxyethyl methacrylate itaconic acid copolymeric hydrogels prepared via gamma radiation. Radiat Phys Chem 2007;76:1390-4.
57. Park SE, Nho YC, Kim HI. Preparation of poly (polyethylene glycol methacrylate-co-acrylic acid) hydrogels by radiation and their physical properties. Radiat Phys Chem 2004;3:221-7.
58. Luo W, Zhang W, Chen P, Fang Y. Synthesis and properties of starch grafted poly[acrylamide-co-(acrylic acid)]/ montmorillonite nano superabsorbent vial-ray irradiation technique. J Appl Polym Sci 2005;96:1341-6.
59. Ahmed EM. Hydrogel: preparation, characterization and applications. J Adv Res 2015;6:105-21.
60. Fenglan X, Yubao L, Jiang WX. Preparation and characterization of nano-hydroxyl apatite polyvinyl alcohol hydrogel biocomposite. J Mater Sci 2004;39:5669-72.
61. Baroli B. Hydrogels for tissue engineering and delivery of tissue inducing substances. J Pharm Sci 2007;96:2197-223.
62. Yusof N, Hafiza AHA, Zohdi RM, Bakar ZA. Development of honey hydrogel dressing for enhanced would healing. Radiat Phys Chem 2007;76:1767-70.
63. Mukherjee D, Banthia AK. Preparation of adrenochrome hydrogel patch, gel ointment and the comparison of their blood coagulating and wound healing capability. Mat Manu Prod 2006;21:297-301.
64. Jones A, Vaughan D. Hydrogel deessings in the management of a variety of wound types: a review. J. Orthop Nurs 2005;9:1.
65. Weir D. Top tips for wound selection. Wounds Inter 2012;3:18-22.
66. Hima Bindu TVL, Vidyavathi M, Kavitha K, Sastry TP. Preparation and evaluation of gentamicin loaded chitosan gelatin composite films for wound healing activity. IJABPT 2011;24:453-63.
67. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 2011;29:322-37.
68. Jayaramudu T, Raghavendra GM, Varaprasad K, Koduri R, Konduru MR. Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria. Carbohydr Polym 2013;95:188-94.
69. Mohan YM, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, et al. Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Inter Sci 2010;342:73-82.
70. Ryu JM, Chung SJ, Lee MH, Kim CK, Shim CK. Increased bioavailability of propranolol in rats by retaining thermally gelling liquid suppositories in the rectum. J Controlled Release 1999;59:163-72.
71. Graham N. Hydrogels in controlled drug delivery. Polym Bio 1986. p. 170-94.
72. Bajpai S, Sonkusley J. Hydrogels for oral drug delivery of peptides: synthesis and characterization. J Appl Polym Sci 2002;83:1717-29.
73. Nguyen QV, Park JH, Lee DS. Injectable polymeric hydrogels for the delivery of therapeutic agents: a review. Eur Polym J 2015;72:602-19.
74. Perez C, Castellanos IJ, Costantino HR, Azzam W, Griebenow K. Recent trends in stabilizing protein structure upon encapsulation and release from bioerodiblepolymers. J Pharm Pharmacol 2002;54:301-13.
75. Black KA, Lin BF, Wonder EA, Desai SS, Chung EJ, Ulery BD, et al. Biocompatibility and characterization of a peptideamphiphile hydrogel for applications in peripheral nerve regeneration. Tissue Eng 2015;21:1333-42.
76. Raza F, Zafar H, Zhu Y, Ren Y, Ullah A, Khan AU, et al. A review on recent advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers. Pharmaceutics 2018;10:16.
77. Shi J, Xu B. Nanoscale assemblies of small molecules controls the fate of cells. Nano Today 2015;10:615-30.
78. Li J, Kuang Y, Shi J, Zhou J, Medina JE, Zhou R, et al. Enzyme-instructed intracellular molecular self-assembly to boost activity of cisplatin against drug-resistant ovarian cancer cells. Angew Chem 2015;127:13505-9.
79. Smith DJ, Brat G, Medina S, Tong D, Huang Y, Johanna G, et al. A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels. Nat Nanotechnol 2016;11:95-102.
80. Chapekar MS. Tissue engineering: challenges and opportunities. J Biomed Mater Res 2000;53:617-20.
81. Swarbrick J. Encyclopedia of Pharmaceutics, F-O, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL Taylor and Francis Group 2013;4:33487-2742.
82. Gibas I, Janik H. Synthetic polymer hydrogels for biomedical applications. Chem Technol 2010;4:297-304.
83. Parkes M, Myant C, Dini D, Philippa C. Tribology-optimised silk protein hydrogels for articular cartilage repair. Tribol Int 2015;89:9-18.
84. Kim JH, Sim SJ, Lee DH, Kim D, Lee YK. Preparation and properties of PHEA/chitosan composite hydrogel. Polym J 2004;36:943-8.
85. Holland NB, Qiu Y, Ruegsegger M, Marchant RE. Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature 1998;392:799-801.
86. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev 2001;101:1869-79.
87. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomater Sci Polymer 2001;12:107-24.
88. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003;24:4337-51.
89. Lindsey AS, Adam MD, Sarena DH, Nicholas AP. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Delivery 2014;11:901-15.
90. Mastropietro DJ, Omidian H, Park K. Drug delivery applications for superporous hydrogels. Expert Opin Delivery 2012;9:71-89.
91. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 2000;50:27-46.
92. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Delivery Rev 2012;64:557-70.
93. Carr DA, Gomez Burgaz M, Boudes MC, Peppas NA. Complexation hydrogels for the oral delivery of growth hormone and salmon calcitonin. Ind Eng Chem Res 2010;49:11991-5.
94. Jarvinen K, Jarvinen T, Urtti A. Ocular absorption following topical delivery. Adv Drug Delivery Rev 1995;16:3-19.
95. Maurice DM, Mishima S. Ocular pharmacokinetics. In: M Sears. (Ed.) Handbook of Experimental Pharmacology, Springer, Berlin, Heidelberg; 1984;1011:19-116.
96. Kholdebarin R, Campbell RJ, Jin YP, Buys YM. Multicenter study of compliance and drop administration in glaucoma. Can J Ophthalmol 2008;43:454-61.
97. Goda T, Ishihara K. Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Rev Med Devices 2006;3:167-74.
98. Jansson PE, Lindberg B, Sandford PA. Structural studies of gellan gum, an extracellular polysaccharide elaborated by pseudomonas elodea. Carbohydr Res 1983;124:135-9.
99. Rozier A, Mazuel C, Grove J, Plazonnet B. Gelrite: a novel, ion-activated, insitu gelling polymer for ophthalmic vehicles, effect on bioavailability of timolol. Int J Pharm 1989;57:163-8.
100. Das NA. Review on nature and preparation of hydrogel based on starting material. Int J Pharm Pharm Sci 2013;5:55-8.
101. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer 2008;49:1993-2007.
102. Li J, Kuang Y, Shi J, Gao Y, Zhou J, Bing Xu. The conjugation of nonsteroidal anti-inflammatory drugs (NSAID) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels. Beilstein J Org Chem 2013;9:908-17.
103. Conde J, Nuria O, Mariana A, Hyun SS, Natalie A. Self-assembled RNA-triple-helix hydrogel scaffold for micro RNA modulation in the tumour microenvironment. Nat Mater 2016;15:353-63.
104. Conde J, Oliva N, Zhang Y, Artzi N. Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model. Nat Mater 2016;15:1128-38.
105. Kim JI, Kim B, Chun C, Lee SH, Song SC. MRI-monitored long-term therapeutic hydrogel system for brain tumors without surgical resection. Biomaterials 2012;33:4836-42.
106. Gu L, Mooney DJ. Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat Rev Cancer 2016;16:56-66.
107. Wang W, Song H, Zhang J, Li P, Li C, Wang C, et al. An injectable, thermosensitive and multicompartment hydrogel for simultaneous encapsulation and independent release of a drug cocktail as an effective combination therapy platform. J Controlled Release 2015;203:57-66.
108. Das Surojeet, Kumar V, Tiwari N, Singh L, Singh S. Recent advances in hydrogels for biomedical applications. Asian J Pharm Clin Res 2018;11:62-8.
109. Lorenz DH. A skin adhesive hydrogel, its preparation and uses. US patent 5306504; 1994.
110. Quattrone A, Czajka A, Sara S. Thermosensitive hydrogel mask significantly improves skin moisture and skin tone. Cosmetics 2017;4:1-18.
111. Narjary B, Aggarwal P, Kumar S, Meena MD. Significance of hydrogel and its application in agriculture. Indian Farming 2013;62:15-7.
112. Gupta AC, Chawla S, Hegde A, Singh D, Bandyopadhyay B. Establishment of an in vitro organoid model of dermal papilla of human hair follicle. J Cell Physiol 2018;11:9015-30.
113. Patel GC, Dalwadi CA. Recent patents on stimuli responsive hydrogel drug delivery system. Recent Pat Drug Delivery Formulation 2013;7:206-15.
114. Borja J, Sharon HS. Anhydrous hydrogel composition and delivery system: Patent US2017/0239359A1; 2017.
115. Deschepper M, Petite HD, Logeart A, Joseph P, Laurent B, Veronique LG, et al. Time controlled glucose releasing hydrogels and application thereof. Patent 20170304489; 2017.
116. Dylan JB, Tucson AZ, Mareva B, Fevre SJ. Hydrogels from dynamic covalent networks. Patent US 9,700,635 B2; 2017.
117. Amanpreet SS. Composite hydrogel drug delivery systems. Patent US92544267B2; 2016.
118. Sannino A, Luigi Ambrosio, Nicolais L, Demitri C. Polymer hydrogels and methods of preparation thereof, Patent US 8658147 B2; 2014.
119. Eric B, Chicago IL, Jennifer JKM, Evanston IL, Victor PL, Naperville IL. Thermo-responsive hydrogel compositions, Patent US 2014/0065226A1; 2014.
120. Khutoryanskiy V, Khutoryanskaya O, Cook JP, Goodall GW. Hydrogel synthesis, Patent US 2013/0018110 A1; 2013.
121. Gong G, Subraya Pai S, Sershen SR. Fragmented hydrogel, Patent US20120238644A1; 2012.
122. Ki-Dong P, Seoul YKJ, Park Incheon KR, Seoul. In situ Forming Hydrogel and Biomedical use Thereof, Patent US 2012/0100103 A1; 2012.
123. Nair HR, Kulkarni Gopal KM. A biodegradable polymeric hydrogel system, Patent WO2011111067B2; 2011.
172 Views | 156 Downloads
How to Cite
DEVI, L., & GABA, P. (2019). HYDROGEL: AN UPDATED PRIMER. Journal of Critical Reviews, 6(4), 1-10. https://doi.org/10.22159/jcr.2019v6i4.33266
Pharmaceutical Sciences