• Rajnish Gupta Department of Neurobehavioral Toxicology, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat 380016, India


Nanotechnology is the next-generation science revolutionized the world by providing many unpredicted outcomes. Though apparent beneficial, nanomaterials may associate with severe unknown health issues. People are exposed to nanoparticles during production, storage, shipping, utilization, and waste treatment process without adequate protection. Cadmium Sulfide Nanoparticles (Cd. nps) are used frequently to produce hybrid solar cells, semiconductors, Ni-Cd batteries, preparing metal alloys and coatings, fluorescence imaging and biosensing, light emitting diode and plastic stabilizers. Toxicity of Cd. nps has raised a significant apprehension both, occupationally and environmentally yet no compiled data is available to signify its possible toxicity. Consequently, the present review meticulously evaluated the available literature and summaries the detrimental effect of cadmium sulfide nanoparticles. This attempt will specify existing knowledge of the toxic effects of cadmium-based nanoparticles and will aware personnel to minimize direct or indirect exposure.

Keywords: Cadmium sulfide, Nanotoxicology, Occupational exposure, Solar cell


1. Chiang HM, Xia Q, Zou X, Wang C, Wang S, Miller BJ, et al. Nanoscale ZnO induces cytotoxicity and DNA damage in human cell lines and rat primary neuronal cells. J Nanosci Nanotechnol 2012;12:2126-35.
2. Xia T, Michael K, Monty L, Lutz M, Benjamin G, Haibin S, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008;2:2121-34.
3. Sheng Y, De Liao L, Thakor NV, Tan MC. Nanoparticles for molecular imaging. J Biomed Nanotech 2014;10:2641-76.
4. Paddle BM. Biosensors for chemical and biological agents of defence interest. Biosensors Bioelectronics 1996;11:1079-113.
5. Raab C, Simko M, Gazso A, Fiedeler U, Nentwich M. What are synthetic nanoparticles? Nano Trust Dossiers 2011;022en:1-4.
6. Sutariya VB, Pathak Y. Biointeractions of nanomaterials. CRC Press USA; 2014.
7. Rajput N. Nanotechnology in civil engineering and construction: a review. Int J Res Eng Appl Sci 2015;5:208-14.
8. Alibart F, Pleutin S, Guerin D, Novembre C, Lenfant S, Lmimouni K, et al. An organic nanoparticle transistor behaving as a biological spiking synapse. Adv Funct Mater 2010;20:330-7.
9. Chau CF, Wu SH, Yen GC. The development of regulations for food nanotechnology. Trends Food Sci Tech 2007;18:269-80.
10. Goho A. Hungry for nano: the fruits of nanotechnology could transform the food industry. Sci News; 2004.
11. Canham L, Aston R. Will a chip every day keep the doctor away? Phys World 2001;14:27.
12. Yunus IS, Harwin, Kurniawan A, Adityawarman D, Indarto A. Nanotechnologies in water and air pollution treatment. Environ Technol Rev 2012;1:136-48.
13. Bhalgat MK, Haugland RP, Pollack JS, Swan S, Haugland RP. Green-and red-fluorescent nanospheres for the detection of cell surface receptors by flow cytometry. J Immunol Methods 1998;219:57-68.
14. Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003;301:1884-6.
15. Lanza GM, Abendschein DR, Yu X, Winter PM, Karukstis KK, Scott MJ, et al. Molecular imaging and targeted drug delivery with a novel, ligand-directed paramagnetic nanoparticle technology. Acad Radiol 2002;9:S330-1.
16. Wickline SA, Lanza GM. Nanotechnology for molecular imaging and targeted therapy. Circulation 2003;107:1092–5.
17. Lanza GM, Wickline SA. Targeted ultrasonic contrast agents for molecular imaging and therapy. Prog Cardiovasc Dis 2001;44:13-31.
18. Lee CM, Tanaka T, Murai T. Novel chondroitin sulfate-binding cationic liposomes loaded with cisplatin efficiently suppress the local growth and liver metastasis of tumor cells in vivo. Cancer Res 2002;62:4282-8.
19. Gnad Vogt SU, Hofheinz RD, Saussele S. Pegylated liposomal doxorubicin and mitomycin C in combination with infusional 5-fluorouracil and sodium folinic acid in the treatment of advanced gastric cancer: results of a phase II trial. Anti-Cancer Drugs 2005;16:435-40.
20. Sapra P, Tyagi P, Allen TM. Ligand-targeted liposomes for cancer treatment. Curr Drug Delivery 2005;2:369-81.
21. Lila AS, Ishida T, Kiwada H. Targeting anticancer drugs to tumor vasculature using cationic liposomes. Pharm Res 2010;27:1171-83.
22. Radomski A, Jurasz P, Alonso?Escolano D, Drews M, Morandi M, Malinski T, et al. Nanoparticle?induced platelet aggregation and vascular thrombosis. Br J Pharmacol 2005;146:882-93.
23. Cui D, Tian F, Ozkan CS, Wang M, Gao H. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 2005;155:73-85.
24. Alazzam A, Mfoumou E, Stiharu I, Kassab A, Darnel A, Yasmeen A, et al. Identification of deregulated genes by single wall carbon-nanotubes in human normal bronchial epithelial cells. Nanomed Nanotech Biol Med 2010;6:563-9.
25. Khanna P, Ong C, Bay BH, Baeg GH. Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials 2015;5:1163-80.
26. Wilbur SB, Hansen H, Pohl H, Colman J, McClure P. Using the ATSDR guidance manual for the assessment of joint toxic action of chemical mixtures. Environ Toxicol Pharmacol 2004;18:223-30.
27. Favero PP, Souza Parise MD, Fernandez JL, Miotto R, Ferraz AC. Surface properties of CdS nanoparticles. Brazilian J Phys 2006;36:1032-4.
28. Samir D. The protective effect of zinc and magnesium against subchronic cadmium toxicity in wistar rats (biochemical and neurobehavioral effects). Asian J Pharma Clin Res 2019:12;217-25.
29. Suhartono EI, Santosa PB. Ameliorative effects of different parts of Gemor (Nothaphoebe coriacea) on cadmium induced glucose metabolism alteration in vitro. Int J Pharm Pharm Sci 2015;7:17-20.
30. Jyothi Palati D, SR Vanapatla. Protective role of Aerva monsoniae and selenium on cadmium-induced oxidative liver damage in rats. Asian J Pharm Clin Res 2018;11:177-81.
31. Jamakala O, Rani AU. Mitigating role of zinc and iron against cadmium induced toxicity in liver and kidney of male albino rat: a study with reference to metallothionein quantification. Int J Pharm Pharm Sci 2014;6:411-7.
32. Acharya KP. Photocurrent spectroscopy of CdS/plastic, CdS/glass, and ZnTe/GaAs hetero-pairs formed with pulsed-laser deposition. Doctoral dissertation, Bowling Green State University, USA; 2009.
33. Zhu H, Jiang R, Xiao L, Chang Y, Guan Y, Li X, et al. Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. J Hazardous Mater 2009;169:933-40.
34. Lin CF, Liang EZ, Shih SM, Su WF. CdS nanoparticle light-emitting diode on Si. In light-emitting diodes: research, manufacturing, and applications. Int Soc Optics Photonics 2002;4641:102-11.
35. Li X, Jia Y, Wei J. Solar cells and light sensors based on nanoparticle-grafted carbon nanotube films. ACS Nano 2010;4:2142-8.
36. Duan J, Yu Y, Yu Y. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. Int J Nanomed 2014;9:5131.
37. Ma RM, Dai L, Qin GG. Enhancement-mode metal-semiconductor field-effect transistors based on single n-Cd S nanowires. Appl Phys Lett 2007;90:093109.
38. Song X, Yao W, Zhang B, Wu Y. Application of Pt/CdS for the photocatalytic flue gas desulfurization. Int J Photoenergy 2012;1-5.
39. Pandian SR, Deepak V, Kalishwaralal K, Gurunathan S. Biologically synthesized fluorescent CdS NPs encapsulated by PHB. Enzyme Microb Technol 2011;48:319-25.
40. El-Kemary M, El-Shamy H, Mosaad MM. The role of capping agent on the interaction of cadmium sulphide nanoparticles with flufenamic acid drug. Mater Chem Phys 2009;118:81-5.
41. Kozhevnikova NS, Vorokh AS. Preparation of stable colloidal solution of cadmium sulfide CdS using ethylenediaminetetraacetic acid. Russian J Gen Chem 2010;80:391-4.
42. Bandaranayake RJ, Wen GW, Lin JY, Jiang HX, Sorensen CM. Structural phase behavior in II–VI semiconductor nanoparticles. Appl Phys Lett 1995;67:831-3.
43. Dneprovskii V, Zhukov E, Karavanskii V, Poborchii V, Salamatina I. Nonlinear optical properties of semiconductor quantum wires. Superlattices Microstruct 1998;23:1217-21.
44. Aqili AK, Ali Z, Maqsood A. Optical and X-ray studies of low resistivity CdS films. J Mater Sci Lett 2000;19:1229-31.
45. Anikin KV, Melnik NN, Simakin AV, Shafeev GA, Voronov VV, Vitukhnovsky AG. Formation of ZnSe and CdS quantum dots via laser ablation in liquids. Chem Phys Lett 2002;366:357-60.
46. Conde O, Rolo AG, Gomes MJ, Ricolleau C, Barber DJ. HRTEM and GIXRD studies of CdS nanocrystals embedded in Al2O3 films produced by magnetron RF-sputtering. J Crystal Growth 2003;247:371-80.
47. Pan A, Yang H, Liu R, Yu R, Zou B, Wang Z. Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts. J Am Chem Soc 2005;127:15692-3.
48. Chakarvarti SK, Kumar V, Kumar S. Galvanic-fabrication of CdS microstructures using nuclear track filter membranes. J Mater Sci 2005;40:503-4.
49. Yu LM, Zhu CC, Fan XH, Qi LJ, Yan W. CdS/SiO2 nanowire arrays and CdS nanobelt synthesized by thermal evaporation. J Zhejiang Univ Sci A 2006;7:1956-60.
50. Xiao J, Peng T, Dai K, Zan L, Peng Z. Hydrothermal synthesis, characterization and its photoactivity of CdS/Rectorite nanocomposites. J Solid State Chem 2007;180:3188-95.
51. Lazos CG, Rosendo E, Juarez H. Hexagonal phase of CdS thin films obtained by oscillating chemical bath. J Electrochem Soc 2008;155:D158-62.
52. Lin YF, Song J, Ding Y, Lu SY, Wang ZL. Piezoelectric nanogenerator using CdS nanowires. Appl Phys Lett 2008;92:022105.
53. Mahdavi SM, Irajizad A, Azarian A, Tilaki RM. Optical and structural properties of copper doped CdS thin films prepared by pulsed laser deposition. Scientia Iranica 2008;15:360-5.
54. Thongtem T, Phuruangrat A, Thongtem S. Solvothermal synthesis of CdS nanowires templated by polyethylene glycol. Ceramics Int 2009;35:2817-22.
55. Mammadov MN, Aliyev AS, Elrouby M. Electrodeposition of cadmium sulfide. Int J Thin Film Sci Tech 2012;1:43-53.
56. Girginer B, Galli G, Chiellini E, Bicak N. Preparation of stable CdS nanoparticles in aqueous medium and their hydrogen generation efficiencies in photolysis of water. Int J Hydrog Energy 2009;34:1176-84.
57. Lahav M, Leiserowitz L. The effect of solvent on crystal growth and morphology. Chem Eng Sci 2001;56:2245-53.
58. Pattabi M, Uchil J. Synthesis of cadmium sulphide nanoparticles. Solar Energy Mater Solar Cells 2000;63:309-14.
59. Rathore KS, Deepika DP, Saxena NS, Sharma KB. Effect of Cu doping on the structural, optical and electrical properties of cds nanoparticles. J Ovonic Res 2009;5:175-85.
60. Bajaj VK, Goyal A, Sharma G, Sharma KB, Gupta RS. Synthesis of CdS nanoparticle and reveal its effect on reproductive system of male albino rats. Bio Nano Sci 2013;3:58-66.
61. Rodriguez Fragoso P, Reyes Esparza J, Leon Buitimea A, Rodriguez Fragoso L. Synthesis, characterization and toxicological evaluation of maltodextrin capped cadmium sulfide nanoparticles in human cell lines and chicken embryos. J Nanobiotech 2012;10:47.
62. El-Kemary M, El-Shamy H, Mosaad MM. The role of capping agent on the interaction of cadmium sulphide nanoparticles with flufenamic acid drug. Mater Chem Phys 2009;118:81-5.
63. Hossain ST, Mukherjee SK. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells. J Hazard Mater 2013;260:1073-82.
64. Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 2006;114:165.
65. Gonzalez L, Lison D, Kirsch Volders M. Genotoxicity of engineered nanomaterials: a critical review. Nanotoxicology 2008;2:252-73.
66. Wang Y, Aker WG, Hwang HM, Yedjou CG, Yu H, Tchounwou PB. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci Total Environ 2011;409:4753-62.
67. Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Particle Fibre Toxicol 2010;7:22.
68. Younes NR, Amara S, Mrad I, Ben Slama I, Jeljeli M, Omri K, et al. Subacute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: emotional behavior and pathophysiological examination. Environ Sci Pollut Res 2015;22:8728-37.
69. Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJ. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol 2014;37:336-47.
70. Liu Y, Xu Z, Li X. Cytotoxicity of titanium dioxide nanoparticles in rat neuroglia cells. Brain Injury 2013;27:934-9.
71. Li T, Shi T, Li X, Zeng S, Yin L, Pu Y. Effects of nano-MnO2 on dopaminergic neurons and the spatial learning capability of rats. Int J Environ Res Public Health 2014;11:7918-30.
72. Lademann J, Weigmann HJ, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Physiol 1999;12:247-56.
73. Trop M, Novak M, Rodl S, Hellbom B, Kroell W, Goessler W. Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma Acute Care Surgery 2006;60:648-52.
74. Vasantharaja D, Ramalingam V. Neurotoxic effect of titanium dioxide nanoparticles: Biochemical and pathological approach in male wistar rats. Int J Appl Pharm 2018;10:74-81.
75. Wang B, Du Y. Cadmium and its neurotoxic effects. Oxid Med Cell Longev 2013;898034.
76. Cao Y, Chen A, Radcliffe J, Dietrich KN, Jones RL, Caldwell K, et al. Postnatal cadmium exposure, neurodevelopment, and blood pressure in children at 2,5, and 7 y of age. Environ Heal Perspect 2009;117:1580.
77. Pesch B, Haerting J, Ranft U, Klimpel A, Oelschlägel B, Schill W. Occupational risk factors for renal cell carcinoma: agent-specific results from a case-control study in germany. Int J Epidemiol 2000;29:1014-24.
78. Kim SD, Moon CK, Eun SY, Ryu PD, Jo SA. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis. Biochem Biophys Res Commu 2005;328:326-34.
79. Monroe RK, Halvorsen SW. Cadmium blocks receptor-mediated Jak/STAT signaling in neurons by oxidative stress. Free Radical Biol Med 2006;41:493-502.
80. Kominkova M, Milosavljevic V, Vitek P. Comparative study on toxicity of extracellularly biosynthesized and laboratory synthesized CdTe quantum dots. J Biotechnol 2017;241:193-200.
81. Waalkes MP. Cadmium carcinogenesis in review. J Inorg Biochem 2000;79:241-4.
82. Joseph P, Muchnok TK, Klishis ML. Cadmium-induced cell transformation and tumorigenesis are associated with transcriptional activation of c-fos, c-jun, and c-myc proto-oncogenes: role of cellular calcium and reactive oxygen species. Toxicol Sci 2001;61:295-303.
83. Lopez E, Figueroa S, Oset Gasque MJ, Gonzalez MP. Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol 2003;138:901-11.
84. Rodriguez Fragoso P, Reyes Esparza J, Leon Buitimea A, Rodriguez Fragoso L. Synthesis, characterization and toxicological evaluation of maltodextrin capped cadmium sulfide nanoparticles in human cell lines and chicken embryos. J Nanobiotechnol 2012;10:47.
85. Hallare AV, Schirling M, Luckenbach T, Kohler HR, Triebskorn R. Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J Thermal Biol 2005;30:7-17.
86. Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XH. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 2007;1:133-43.
87. Trabelsi H, Azzouz I, Sakly M, Abdelmelek H. Subacute toxicity of cadmium on hepatocytes and nephrocytes in the rat could be considered as a green biosynthesis of nanoparticles. Int J Nanomed 2013;8:1121.
88. Li KG, Chen JT, Bai SS, Wen X, Song SY, Yu Q, et al. Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots. Toxicol In Vitro 2009;23:1007-13.
89. Zhang W, Lin K, Sun X, Dong Q, Huang C, Wang H, et al. Toxicological effect of MPA–CdSe QDs exposure on zebrafish embryo and larvae. Chemosphere 2012;89:52-9.
90. Fein A, Torchinsky A, Pinchasov M, Katz N, Toder V, Herkovits J. Cadmium embryotoxicity: evidence of a direct effect of cadmium on early rat embryos. Bull Environ Contam Toxicol 1997;59:520-4.
91. Meng CY, Han YF, Liu YL, Gao HX, Ren YY, Qian QZ, et al. Resveratrol alleviate the injury of mice liver induced by cadmium sulfide nanoparticles. Kaohsiung J Med Sci 2019;35:297-302.
92. Mirnajafizadeh F, Ramsey D, McAlpine S, Wang F, Stride JA. Nanoparticles for bioapplications: study of the cytotoxicity of water dispersible CdSe(S) and CdSe(S)/ZnO quantum dots. Nanomaterials 2019;9:465.
93. Rana K, Verma Y, Rani V, Rana SVS. Renal toxicity of nanoparticles of cadmium sulphide in rat. Chemosphere 2018;193:142-50.
94. Simko M, Nentwich M, Gazso A, Fiedeler U. How nanoparticles enter the human body and their effects there? NanoTrust Dossier 2010;003en.
95. Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 1997;10:485-94.
96. Crawford DR. Regulation of mammalian gene expression by reactive oxygen species. React Oxygen Species Biol Sys Springer, USA; 2002. p. 155-71.
97. Shi H, Hudson LG, Liu KJ. Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radical Biol Med 2004;37:582-93.
98. Evans MD, Dizdaroglu M, Cooke MS. Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 2004;567:1-61.
99. Butterfield DA, Kanski J. Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 2001;122:945-62.
100. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E. Oxidative stress and cell signalling. Curr Med Chem 2004;11:1163-82.
101. Poon HF, Calabrese V, Scapagnini G, Butterfield DA. Free radicals and brain aging. Clin Geriatric Med 2004;20:329-59.
102. Bodamyali T, Stevens CR, Blake DR, Winyard PG. Reactive oxygen/nitrogen species and acute inflammation: a physiological process. Free Radical Inflammat; 2000. p. 11-6.
103. Fu PP, Xia Q, Sun X, Yu H. Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2012;30:1-41.
104. Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 2014;22:64-75.
105. Xia Q, Boudreau MD, Zhou YT, Yin JJ, Fu PP. UVB photoirradiation of Aloe vera-formation of free radicals, singlet oxygen, superoxide, and induction of lipid peroxidation. J Food Drug Anal 2011;19:396-402.
106. Gilbert DL, Colton CA. Reactive oxygen species in biological systems: an interdisciplinary approach. Kluwer Academic Publishers, USA; 1999. p. 593-608.
107. Kawanishi S, Hiraku Y, Murata M, Oikawa S. The role of metals in site-specific DNA damage with reference to carcinogenesis. Free Radical Biol Med 2002;32:822-32.
108. Chen CY, Zhang SL, Liu ZY, Tian Y, Sun Q. Cadmium toxicity induces ER stress and apoptosis via impairing energy homoeostasis in cardiomyocytes. Biosci Reports 2015;35:e00214.
109. Wang S, Ren X, Hu X, Zhou L, Zhang C, Zhang M. Cadmium-induced apoptosis through reactive oxygen species-mediated mitochondrial oxidative stress and the JNK signaling pathway in TM3 cells, a model of mouse leydig cells. Toxicol Appl Pharmacol 2019;368:37-48.
110. Oberdorster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005;113:823.
111. Zhu X, Hondroulis E, Liu W, Li CZ. Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. Small 2013;9:1821-30.
112. Li Y, Yu S, Wu Q, Tang M, Pu Y, Wang D. Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode caenorhabditis elegans. J Hazard Mater 2012;219:221-30.
113. Akhtar MJ, Ahamed M, Fareed M, Alrokayan SA, Kumar S. Protective effect of sulphoraphane against oxidative stress mediated toxicity induced by CuO nanoparticles in mouse embryonic fibroblasts BALB 3T3. J Toxicol Sci 2012;37:139-48.
114. Fan Z, Lu JG. Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 2005;5:1561-73.
115. Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ. The apoptotic effect of nanosilver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 2008;179:130-9.
116. Mei N, Zhang Y, Chen Y. Silver nanoparticle?induced mutations and oxidative stress in mouse lymphoma cells. Environ Mol Mutagen 2012;53:409-19.
117. Kim S, Ryu DY. Silver nanoparticle?induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 2013;33:78-89.
118. Alarifi S, Ali D, Alkahtani S. Nanoalumina induces apoptosis by impairing antioxidant enzyme systems in human hepatocarcinoma cells. Int J Nanomed 2015;10:3751.
119. Al Gurabi MA, Ali D, Alkahtani S, Alarifi S. In vivo DNA damaging and apoptotic potential of silver nanoparticles in swiss albino mice. Onco Targets Ther 2015;8:295.
120. Sliwinska A, Kwiatkowski D, Czarny P. Genotoxicity and cytotoxicity of ZnO and Al2O3 nanoparticles. Toxicol Mech Methods 2015;25:176-83.
121. Li JJ, Zou LI, Hartono D, Ong CN, Bay BH, Lanry Yung LY. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv Mater 2008;20:138-42.
122. Bhattacharya K, Davoren M, Boertz J, Schins RP, Hoffmann E, Dopp E. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Particle Fibre Toxicol 2009;6:17.
123. Yin Y, Shen WH. PTEN: a new guardian of the genome. Oncogene 2008;27:5443-53.
124. Choi AO, Brown SE, Szyf M, Maysinger D. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J Mol Med 2008;86:291-302.
125. Baktur R, Patel H, Kwon S. Effect of exposure conditions on SWCNT-induced inflammatory response in human alveolar epithelial cells. Toxicol In Vitro 2011;25:1153-60.
126. Qu C, Wang L, He J. Carbon nanotubes provoke inflammation by inducing the pro-inflammatory genes IL-1? and IL-6. Gene 2012;493:9-12.
127. Turabekova M, Rasulev B, Theodore M, Jackman J, Leszczynska D, Leszczynski J. Immunotoxicity of nanoparticles: a computational study suggests that CNTs and C60 fullerenes might be recognized as pathogens by toll-like receptors. Nanoscale 2014;6:3488-95.
128. Reddy ST, Van Der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O'Neil CP, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 2007;25:1159-64.
129. Mottram PL, Leong D, Crimeen Irwin B. Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm 2007;4:73-84.
130. Wallach D, Kang TB, Kovalenko A. Concepts of tissue injury and cell death in inflammation: a historical perspective. Nat Rev Immunol 2014;14:51-9.
131. Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radical Biol Med 2000;28:463-99.
132. Byrne JD, Baugh JA. The significance of nanoparticles in particle-induced pulmonary fibrosis. McGill J Med 2008;11:43.
133. Pujalte I, Passagne I, Brouillaud B, Treguer M, Durand E, Ohayon Courtes C, et al. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Particle Fibre Toxicol 2011;8:10.
134. Nygaard UC, Hansen JS, Samuelsen M, Alberg T, Marioara CD, Løvik M. Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci 2009;109:113-23.
135. Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 2008;180:222-9.
87 Views | 105 Downloads
How to Cite
Gupta, R. (2019). CADMIUM NANOPARTICLES AND ITS TOXICITY. Journal of Critical Reviews, 6(5), 1-7.
Applied Sciences