Physiological and biochemical responses of wheat (Triticum aestivum L.) plants to polyamines under leadstress.

  • Mohamed A Seif El-Yazal Botany Department, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt

Abstract

The distribution, growth, development and productivity of wheat plants are greatly affected by various abiotic stresses such asLead (Pb) stress which become one of the most abundant toxic metal in the earth crust.Under the three appliedpolyamine (PAs)applications, the efficiency of wheat plants to tolerate Pb2+ stress in terms of growth and yield characteristics was noticed tovarying degrees.The current study focused onthe impact of 2.0 mMlead (Pb2+) on growth and performanceofwheat plants before and after polyamine (PAs)applications.Results point out that, better growth andyield characteristics, chlorophyll "a" (Chl-a), chlorophyll "b" (Chl-b), soluble sugars, indolesand enzymatic antioxidants [i.e., peroxidase (POX), catalase (CAT), ascorbate peroxidase (ASOX), polyphenol oxidase (PPOX) and glutathione reductase (GR)] and the enzyme α-amylasecontents wereobtained with seed soaking in 0.25 mM Spm, 0.50 mM Spd or 1.0 mM Put than those generated with seed soaking in waterunder 2.0 mM Pb2+ stress. In contrast, the concentrationof endogenous Pb2+ were significantly reduced. Among all tested PAs, 1.0 mM Put showed the best resultsand thus is recommended, as seed soaking, for wheat to grow well under Pb2+ stress.

Keywords: Triticum aestivum, lead, polyamines, osmoprotectants, antioxidantenzyme, growtgrogrowthwthh, growth, yield

References

Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., Carrasco, P.and Tiburcio, A.F.(2010). Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237-1249; http://dx.doi.org/10.1007/s00425-010-1130-0; PMID: 20221631 [PubMed] [Cross Ref]
Aldesuquy, H. S. (2014). Effect of spermine and spermidine on wheat plants irrigated with waste water: conductive canals of flag leaf and peduncle in relation to grain yield. J. Stress Physiol. Biochem., 10: 145–166.
Aldesuquy, H. S., Haroun, S. A., Abo-Hamed, S. A. and El-Said, A. A. (2004). Ameliorating effect of kinetin on pigments, photosynthetic characteristics, carbohydrate contents and productivity of cadmium treated Sorghum bicolor plants. Acta Bot. Hungar., 46: 1–21.
Aldesuquy, H., Samia, H., Samy, A. and Abdel-Whab, E. (2014). Involvement of spermine and spermidine in the control of productivity and biochemical aspects of yielded grains of wheat plants irrigated with waste water. J. Stress Physiol. Biochem., 1 - 3.
Ali, B., Xu, X., Gill, R. A., Yang, S., Ali, S.and Tahir, M., et al. (2014).Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus.Ind. Crop Prod. 52: 617–626. doi: 10.1016/j.indcrop.2013.11.033
Alscher, P. G., Erturk, N. and Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plant. J. Exp. Bot., 53: 1331–1341.
Alsokari, S. S. and Aldesuquy, H. S. (2011).Synergistic effect of polyamines and waste water on leaf turgidity, heavy metals accumulation in relation to grain yield. J. Applied Sci. Res., 7(3): 376-384.
Amooaghaie R. (2011).Role of polyamines in the tolerance of
soybean to water deficit stress.World Acad. Sci. Engin.
Technol. 80: 498-502
Apel, K. and Hirt, H. (2004). Reactive oxygen species: metabolism oxidatives and signal transduction. Ann. Rev. Plant Physiol. Plant Mol. Biol., 55: 373–399.
Ashraf, U., Kanu, A. S., Mo, Z. W., Hussain, S., Anjum, S. A.and Khan, I., et al. (2015). Lead toxicity in rice; effects, mechanisms and mitigation strategies-a mini review. Environ. Sci. Pollut. Res. 22, 18318–18332. doi: 10.1007/s11356-015-5463-x
Ashraf, U., Kanu1,A.S., Deng,Q., Mo,Z., Pan,S., Tian,H.and Tang,X.(2017).Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice. Front. Plant Sci.,8:1-17.doi: 10.3389/fpls.2017.00259 | https://doi.org/10.3389/fpls.2017.00259
Azooz, A. A., Youssef, M. M. and Al-Qamir, M. A. (2011).Comparative evaluation of zinc and lead and their synergistic effect on growth and physiological responses of Hassawai okra (Hibiscus esculentus) seedling. Am. J. Plant Physiol., 6(6): 269-282.
Bashmakov, D. I., Lukatkin, A. S., Revin,V. V. Duchovskis, P. Brazaityte, A. and Baranauskis, K. (2005). Growth of maize seedlings affected by differentconcentrations of heavy metals. Ekologija, 3: 22-27.
Bashri, G. and Prasad, S. M. (2015). Indole acetic acid modulates changes in growth, chlorophyll a fluorescence and antioxidant potential of Trigonella foenum-graecum L. grown under cadmium stress. Acta Physiol. Plant, 37:1745.
Beer, R. F. and Sizer, I. W. (1952).A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., 195: 133.
Besford, R.T., Richardson, C. M., Campos, J. L. and Tiburcio, A. F. (1993).Effect of polyamines on stabilization of molecular complexes of thylakoid membranes of osmotically stressed oat leaves.Planta., 189: 201–206.
Borrell, A., Carbonell, L., Farras, R., Puig Parellada, P. and Tiburcio, A. F. (1997). Polyamines inhibit lipid peroxidation in senescing oat leaves, Physiol. Plant, 99: 385-390.
Bouchereau, A., Aziz, A., Larher, F., Martin-Tanguy, J.(1999). Polyamines and environmental challenges: recent development. Plant Sci. 140:103–125; http://dx.doi.org/10.1016/S0168-9452(98)00218-0 [Cross Ref]
Burzynski, M. (1987). The uptake and transpiration of water and the accumulation of lead by plants growing on lead chloride solutions. Acta Soc. Bot. Poloniae., 56: 271-280.
Cakmak, I.and Marshner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiology, 98:1222-1227.
Clemens, S., Antosiewicz, D. M., Ward, J. M., Schachtman, D. P., and Schroeder, J. I. (1998). The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci., USA 95:12043–12048.
Dawson, C. R.and Magee, R. J. (1955).Ascorbic acid oxidase. In: S. P. Colowich (Ed.). Methods in enzymology, Vol. Academic, New York, 831- 835.
Drolet, G., Dumbroff, E. B., Legg, R. and Thompson, J. E. (1986). Radical scavenging properties of polyamines. Phytochemistry, 25: 367–371.
El-Bassiouny, H. M. S., Mostafa, H. A., El-Khawas, S. A., Hassanein, R. A., Khalil, S. I.and Abd ElMonem, A. A. (2008). Physiological responses of wheat plant to foliar treatments with arginine or putrescine. Austr. J. of Basic and Applied Sci., 2(4):1390-1403.
Ferreira, R.R., Fornazeir, R.F., Vitoria, A.P., Lea, A.P., Azevedo, R.A. (2002) Changes in antioxidant enzymes activities in soybean under cadmium stress. Plant Nutr., 25: 327- 342.
Foyer, C. H.and Noctor, G. (2005). Oxidant and antioxidant signaling in plants: a reevaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ., 28: 1056–1071.
Galston, A.W.and Sawhney, R.K.(1990).Polyamines in plant physiology. Plant Physiol. 94:406 - 410; http://dx.doi.org/10.1104/pp.94.2.406; PMID: 11537482 [PMC free article] [PubMed] [Cross Ref]
Gill, S. S. and Tuteja, N.(2010). Polyamines and abiotic stress tolerance in plants.Plant Signal.Behav., 5: 26–33.
Groppa, M. D.,Rosales, E.P, Iannone, M.F. and Benavides, M.P. (2008).Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots.Phytochemistry, 69(14):2609-15.
Hussain, S.S., Ali, M., Ahmad, M.and Siddique, K.H.M.(2011). Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol. Adv. 29:300-311; http://dx.doi.org/10.1016/j.biotechadv.2011.01.003; PMID: 21241790 [PubMed] [Cross Ref]
Ibrahim, A.H. and Aldesuquy, H.S. (2003).Glycine betaine and shikimic acid induced modification in growth criteria, water relation and productivity of drought Sorghum bicolor plants.Phyton., 43: 351-363.
Jha, A. B. and Dubey, R. S. (2004).Carbohydrate metabolism in growing rice seedlings under arsenic toxicity. Plant Physiol., 123:1029–1036.
Jili, K., ZhiJun, Z. and Liu, Y. (2009). Effects of lead(Pb) stress on seed germination and seedlinggrowth of wheat. Guangxi. Agri. Sci., 40(2): 144-146.
Kaur, G., Singh, H. P., Batish, D. R. and Kohli, R. K. (2012).Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead Pbto soil. J. Environ. Biol., 33: 265-269.
Kaur-Sawhney, R. Shih-Flores, H. E. and Galston, A. W. (1982). Relation of polyamine synthesis and titer to aging and senescence in oat leaves .Plant Physiol., 69: 405–410.
Köhl, K. I. and Lösch, R. (1999).Experimental characterization of heavy metal tolerance in plants.In Heavy Metal Stress in Plants.Eds. M N V Prasad and J Hagemeyer. Springer, Berlin, 371–389.
Kolupaev, Y. E., Oboznyi, A. I. and Shvidenko, N.V. (2013).Role of hydrogen peroxide generation of a signal inducing heat tolerance of wheat seedlings. Russ. J. Plant Physiol 60: 221–229.
Kumar, A., Prasad, M. N. V., and Sytar, O. (2012). Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere 89: 1056–1065. doi: 10.1016/j.chemosphere.2012.05.070
Kurepa, J., Smalle, J., Vanmontagu, M. and Inze, D. (1998).Polyamines and paraquat toxicity in Arabidopsis thaliana. Plant Cell Physiol., 39: 987–992.
Kusano, T., Berberich, T., Tateda, C.and Takahashi, Y. (2008). Polyamines: essential factors for growth and survival. Planta 2008; 228:367-381; http://dx.doi.org/10.1007/s00425-008-0772-7; PMID: 18594857 [PubMed] [Cross Ref]
Larson, P., Herbo, A., Klunsour, S. and Aasheim, T. (1962).On the biogerensis of some indole compounds in Acetobacter, Xylimum. Physiol. Plant., 15:552–565
Lerda, D. (1992).The effect of lead on Allium cepa. Mutat Res., 231: 80- 92.
Li, C. L., Xu, H. M., Xu, J., Chun, X. Y. and Ni, D. J. (2011). Effects of aluminum on ultrastructure and antioxidant activity in leaves of tea plant. Acta Physiol. Plant., 33: 973–978.
Liang, Z.S., Yang, J.W., Shao, H. B. and Han, R. L. (2006). Investigation on water consumption characteristics and water use efficiency of Poplar under soil water-deficits on the Loess Plateau, Biointerfaces, 53: 23-28.
Liu, H., Yu, B.J., Zhang, W. and Liu Y. (2005).Effect of osmotic stress on the activity of H+ -ATPase and the levels of covalently and non-covalently conjugated polyamines in plasma membrane preparation from wheat seedling roots. Plant Sci.,168: 1599–1607.
Liu, J.H., Kitashiba, H., Wang, J., Ban, Y.and Moriguchi, T.(2007). Polyamines and their ability to provide environmental stress tolerance to plants. PlantBiotechnol. 24:117 - 26; http://dx.doi.org/10.5511/plantbiotechnology.24.117 [Cross Ref]
Lovaas, E. (1997).Antioxidant and metal-chelating effects of polyamines. In: Sies H, ed. Advances in Pharmacology. Antioxidants in Disease Mechanisms and Therapy. Academic Press, 38: 119–149.
Maehly, A. C. and Chance, B. C. (1954).The assay of catalases and peroxidases. In: D. Glick (Ed.). Methods of Biochemical Analysis.Vol. 1. Interscience Publish. New York.
Mallan, H. I. and Farrant, J. M. (1998). Effect of metal pollutants cadmium and nickel on soybean seed development. Seed Sci Res., 8: 445–453.
Manivannan, P., Jaleel, C. A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G. M. A. and Panneerselvam, R. (2007).Growth biochemical modifications and proline metabolism in Helianthus annuusL. As induced by drought stress, Colloids Surf. B: Biointerfaces, 59: 141-149.
Mishra, A., and Choudhary, M. A. (1998).Amelioration of lead and mercury effects on germination and rice seedling growth by antioxidants. Biol. Plantarum. 41, 469–473. doi: 10.1023/A:1001871015773
Mittler, R. (2002).Oxidative stress, antioxidant and stress tolerance. Trends Plant Sci. 7: 841–851. doi: 10.1016/S1360-1385(02)02312-9
Noctor, G. and Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Ann. Rev. Plant Physiol. Plant Mol. Biol., 49: 249–279.
Pathak, M.R., Teixeira da Silva, J.A. and Wani,S.H. (2014).Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops Food 5(2): 87–96. Published online 2014 Apr 7. doi: 10.4161/gmcr.28774PMCID: PMC5033173
Petrova, A. N. and Bolotina, T. T. (1956).Studies on the enzyme of starch metabolism in potato tuber during growth.Biochemi., 21: 4-15.
Poduslo, J. F. and Curran, G. L. (1996).Increased permeability of superoxide dismutase at the blood-nerve and blood-brain barriers with retained enzymatic activity after modification with naturally occurring polyamine, putrescine. J. Neurochem, 67: 734–741.
Pourrut, B., Shahid, M., Camille, D., Peter, W., and Eric, P. (2011). Lead uptake, toxicity, and detoxification in plants. Rev. Environ. Contam.Toxicol. 213: 113–136. doi: 10.1007/978-1-4419-9860-6_4
Quartacci, M. F., Cosi, E. and Navari-Izzo, F. (2001).Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot., 52: 77–84.
Rady, M.M., Seif El-Yazal, M.A., Aly Taie, H.A. and Ahmed, S.M. (2016).Response of wheat growth and productivity to exogenous polyamines under lead stress.J. Crop Sci. Biotech. 19 (5): 363- 371.
Rhee, H. J., Kim, E. J. and Lee, J. K. (2007). Physiological polyamines: simple primordial stress molecules. J. Cell Mol. Med., 11:685-703.
Sathe Atul P., Paserkar Neha G., Thakre Mahes B.and Gaikwad
Sharad M. (2015).Engineering polyamines for abiotic stress
tolerance. Ind. J. Appl. Res. 5(1): 1-25
Schaedle, M. and Bassham, J. A. (1977).Chloroplast glutathione reductase, Plant Physiol., 59: 1011–1012.
Schutzendubel, A. and Polle, A. (2002). Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J. Exp. Bot., 53:1351–1365.
Scott, T. A. and Melvin, E. H. (1956).Anthrone colorimetric method. In: Whistler RL, Walfrom ML (ed.) Methods in Carbohydrate Chemistry. Academic Press, New York, London, 1: 384.
Selim, H. H. A., Fayek, M. A., and Sweidan, A. M. (1978). Reproduction of bircher apple cultivar by layering. Ann. Agric. Sci., Moshtohor, Egypt, 9: 157-166.
Shahid, M., Pinelli, E., Pourrut, B., Silvestre, J., and Dumat, C. (2011). Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol. Environ. Saf. 74, 78–84. doi: 10.1016/j.ecoenv.2010.08.037
Shaikh I.R.S., Rafique A.S.and Shaikh AA (2013). Phytotoxic effects of heavy metals Parveen Rajjak (Cr, Cd, Mn and Zn) on Wheat (Triticum aestivum L.) seed germination and seedlings growth in black cotton soil of Nanded. India. Res. J. Chem. Sci. 3(6):14-23
Shao, H. B., Chu, L.Y., Jaleel, A. C. and Zhao, C. X. (2008). Water-deficit stress-induced anatomical changes in higher plants. C. R. Biologies., 331: 215-225.
Sharma, S. S. and Dietz, K. J. (2006).The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot., 57: 711–726.
Shi J., Fu X.Z., Peng T., Fan Q.and Liu J.H. (2010). Spermine
pretreatment confers dehydration tolerance of citrus in vitro
plants via modulation of antioxidative capacity and stomatalresponse. Tree Physiol. 30(7): 914-922
Singh, S., Eapen, S. and Dsouza, S. F. (2006).Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant Bacopamonnieri L. Chemosphere, 62: 233-246.
Singh, R., Tripathi, R. D., Dwivedi, S., Kumar, A., Trivedi, P. K., and Chakrabarty, D. (2010). Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour. Technol. 101: 3025–3032. doi: 10.1016/j.biortech.2009.12.031
Szepesi, A. (2006). Salicylic acid improves the acclimation of Lycopersicon esculentum Mill. L. to high salinity by approximating its salt stress response to that of the wild species L. pennellii. Acta Biological Szegediensis, 50(3-4):177.
Takahashi, T.and Kakehi, J.(2010). Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann. Bot. 105:1-6; http://dx.doi.org/10.1093/aob/mcp259; PMID: 19828463 [PMC free article] [PubMed] [Cross Ref]
Stanhill, G. (1987). Water use efficiency. Adv. Agron. 39: 53-85.
Takahashi, T.and Kakehi, J.(2010). Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann. Bot. 105:1-6; http://dx.doi.org/10.1093/aob/mcp259; PMID: 19828463 [PMC free article] [PubMed] [Cross Ref]
Taneja, S. R. and Sachar, R. C. (1974).Introduction of polyphenol oxidase in germinating wheat seeds.Phytochem., 13: 2695- 2702.
Tanou, G., Ziogas, V., Belghazi, M., Christou, A., Filippou, P. and Job, D. (2014). Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant, Cell Environ., 37: 864–885.
Tiburcio, A. F., Altabella, T. and Masgrau, C. (2002).Polyamines. T. Bisseling, J. Schell (Eds.), New developments in plant hormone research, Springer-Verlag, New York.
Tlustos, P., Balik, J., Pavlikova, D., and Szakova, J. (1997). The uptake of cadmium, zinc, arsenic and lead by chosen crops. Rostlinna.Vyroba., 43 (10): 487.
Velikova, V., Yordanov, I. and Edreva, A. (2000). Oxidative stress and some antioxidant system in acid rain treated bean plants: protective role of exogenous polyamines. Plant Sci., 151:59-66.
Walden, R., Alexandra, C. and Tiburcio, A. F. (1997). Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol., 113:1009–1013.
Walters, D. R. (2003).Polyamines and plant disease.Phytochem., 64: 97–107.
Welburn, A. R. and Lichtenthaler, H. (1984).Formulae and program to determine total carotenoids and chlorophylls a and b leaf extracts in different solvents. In: Advances in photosynthesis research, (Sybesma C. Ed.), (2): 9-12.
Yiu, J-C., Juang, L-D., Fang, D.Y-T., Liu, C-W.and Wu, S-J. (2009).Exogenous putrescine reduces flooding-induced oxidative damage by increasing the antioxidant properties of Welsh onion. Sci. Hortic., 120: 306–314
Zaki E., Nabila M., Hassanein M.S.and Gamal El-Din K. (2007).
Growth and yield of some wheat cultivars irrigated with
saline water in newly cultivated land as affected by
biofertilization. J. Appl. Sci. Res. 3(10): 1121-1126.
Statistics
18 Views | Downloads
How to Cite
Mohamed A Seif El-Yazal. (2021). Physiological and biochemical responses of wheat (Triticum aestivum L.) plants to polyamines under leadstress. Innovare Journal of Agricultural Sciences, 9(1). Retrieved from https://innovareacademics.in/journals/index.php/ijags/article/view/40687
Section
Review Article(s)