• Joshi Mahavir Department of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India.
  • Lata Sneh Department of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India.
  • Kanwar Preeti Department of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India.
  • Mishra Tulika Department of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India.


There are many infectious diseases that may be biofilm mediated, medical device-mediated or from some other agent, are now becoming life-threatening. Despite of availability of many antimicrobial agents, new drugs or therapeutics, these infections have continued to be a global health challenge. Nowadays, conventional antimicrobial agents have failed against many infections due to the emergence of multiple drug-resistant strains. Even, if there is a therapeutic efficacy of these drugs, there inappropriate amounts are resulting in an adequate therapeutic index, local and systematic side effects, including irritation, reduction in gut flora and other manifestations. To overcome such situations, nanostructures have exclusive physicochemical properties as they are ultra small, their size can be controlled, greater surface area to mass ratio, high reactivity and functionalizable structure. Encapsulation of antimicrobial drugs in these nanoparticle systems helps in reducing many side effects. It also helps in the sustained release of drug for a larger time period. Several metal and metal oxide nanoparticles such as silver, gold, zinc, etc. have shown a promising antimicrobial activity. Liposomes, polymeric nanoparticles, dendrimers, and solid lipid nanoparticles have achieved great success as efficient antimicrobial drug delivery systems. These nanoparticles use multiple biological pathways to exert their antimicrobial mechanism such as cell wall disruption, inhibition of RNA synthesis, protein synthesis, etc. Moreover,these preparations of nanoparticles are more cost-effective than that of antibiotic synthesis with lesser or no side effects.

Keywords: Infectious diseases, Antimicrobial resistant, Nanoparticles, Liposomes, Polymeric nanoparticles, Dendrimers, and solid lipid nanoparticles

Author Biography

Joshi Mahavir, Department of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India.

Assistant Professor

Biotechnology Department

University Institute of Sciences

Chandigarh University,
Gharuan, Mohali, Punjab, India


1. Bakker Woudenberg IA. Delivery of antimicrobials to infected tissue macrophages. Adv Drug Delivery Rev 1995;17:5-20.
2. Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. Br J Exp Pathol 1929;103:226-36.
3. Dunne WM. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 2002;15:155-66.
4. Mc Dermott PF, Walker RD, White DG. Antimicrobials: modes of action and mechanisms of resistance. Int J Toxicol 2003; 22:135-43.
5. Byarugaba DK. Mechanisms of antimicrobial resistance. In: Sosa ADJ, Byarugaba DK, Amábile-Cuevas CF, Hsueh PR, Kariuki S, Okeke IN. editors. Antimicrobial Resistance in Developing Countries. New York: Springer; 2010. p. 15-26.
6. Heinzelmann M, Scott M, Lam T. Factors predisposing to bacterial invasion and infection. Am J Surg 2002;183:179-90.
7. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007;130:797-810.
8. Caprile KA, Short CR. Pharmacologic considerations in drug therapy in foals. Vet Clin North Am Food Anim Pract 1987; 31:123-44.
9. Neu HC. Mechanisms of bacterial resistance to antimicrobial agents, with particular reference to cefotaxime and other β-lactam compounds. Rev Infect Dis 1982;4;288-99.
10. Leclercq R, Courvalin P. Resistance to glycopeptides in Enterococci. Clin Infect Dis 1997;1:545-54.
11. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001;65:232-60.
12. Bennett JE, Dolin R, Blaser MJ. Mandell, Douglas, and bennett's principles and practice of infectious diseases E-Book. 8th ed. Elsevier Health Sciences Publisher; 2014.
13. Butaye P, Cloeckaert A, Schwarz S. Mobile genes coding for efflux-mediated antimicrobial resistance in gram-positive and gram-negative bacteria. Int J Antimicrob Agents 2003;22:205-10.
14. Lara HH, Ayala-Nunez NV, Turrent LD, Padilla CR. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 2010;26:615-21.
15. Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 1993;57:138-63.
16. Chopra S, Reader J. tRNAs as antibiotic targets. Int J Mol Sci 2014;16:321-49.
17. Hooper DC. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis 2001;7:337.
18. Everett MJ, Piddock LJV. Mechanisms of resistance to fluoroquinolones. In Kuhlmann J, Dahlhoff A, Zeiler HJ. editors, Quinolone antibacterials. Springer-Verlag KG, Berlin, Germany; 1998. p. 259–97.
19. Enne VI, Livermore DM, Stephens P, Hall LM. Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 2001;357:1325-8.
20. Schmitz FJ, Fluit AC. Mechanisms of resistance. In: D Armstrong, S Cohen. editors. Infectious Diseases. London: Mosby, Ltd; 1999. p. 7.2.1–7.2.14
21. Dessen A, Di Guilmi AM, Vernet T, Dideberg O. Molecular mechanisms of antibiotic resistance in gram-positive pathogens. Curr Drug Targ-Infect Disor 2001;1:63-77.
22. Ranghar S, Sirohi P, Verma P, Agarwal V. Nanoparticle-based drug delivery systems: promising approaches against infections. Braz Arch Biol Technol 2014;57:209-22.
23. Sinha N, Yeow JW. Carbon nanotubes for biomedical applications. IEEE Transactions Nanobiosci 2005;4:180-95.
24. Wu J, Hou S, Ren D, Mather PT. Antimicrobial properties of nanostructured hydrogel webs containing silver. Biomacromolecules 2009;10:2686-93.
25. Donlan RM. Role of biofilms in antimicrobial resistance. ASAIO J 2000;46:S47-52.
26. Adibhatla RM, Hatcher JF. Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signaling 2010;12:125-69.
27. Adibkia K, Javadzadeh Y, Dastmalchi S, Mohammadi G, Niri FK, Alaei-Beirami M. Naproxen–eudragit® RS100 nanoparticles: preparation and physicochemical characterization. Colloids Surf B 2011;83:155-9.
28. Gupta A, Silver S. Molecular genetics: silver as a biocide: will resistance become a problem? Nat Biotechnol 1998;16:888.
29. Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 2003;69:4278-81.
30. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005;16:2346.
31. Holt KB, Bard AJ. Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 2005;44:13214-23.
32. Dibrov P, Dzioba J, Gosink KK, Häse CC. Chemiosmotic mechanism of antimicrobial activity of Ag+in Vibrio cholerae. Antimicrob Agents Chemother 2002;46:2668-70.
33. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004;275:177-82.
34. Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, et al. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. ‎Chem Comm; 2002. p. 3018-9.
35. Kumar R, Münstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 2005;26:2081-8.
36. Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS. Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan− silver nanoparticle composite. Langmuir 2010;26:5901-8.
37. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 2006;110:16248-53.
38. Nanda A, Saravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine NBM 2009;5:452-6.
39. Marambio Jones C, Hoek EM. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 2010;12:1531-51.
40. Shaw CF. Gold-based therapeutic agents. Chem Rev 1999;99:2589-600.
41. Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB. Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends Biotechnol 2010;28:207-13.
42. Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 2006;902:619-27.
43. Gu H, Ho PL, Tong E, Wang L, Xu B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 2003;3:1261-3.
44. Rai A, Prabhune A, Perry CC. Antibiotic-mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 2010;20:6789-98.
45. Duarah S, Pujari K, Durai Rd, Narayanan VHB. Nanotechnology-based cosmeceuticals: a review. Int J Appl Pharm 2016;8:8-12.
46. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F. Toxicological impact studies based on Escherichia coli bacteria in the ultrafine ZnO nanoparticles colloidal medium. Nano Lett 2006;6:866-70.
47. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 2009;107:1193-201.
48. Jiang W, Mashayekhi H, Xing B. Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ Pollut 2009;157:1619-25.
49. Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Ino Mate 2001;3:643-6.
50. Dastjerdi R, Montazer M. A review on the application of inorganic nanostructured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 2010;79:5-18.
51. Pham HN, McDowell T, Wilkins E. Photocatalytically‐mediated disinfection of water using tio2 as a catalyst and spore‐forming Bacillus pumilus as a model. J Environ Sci Health A 1995;30:627-36.
52. Ireland JC, Klostermann P, Rice EW, Clark RM. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. J Appl Environ Microbiol 1993;59:1668-70.
53. Koper OB, Klabunde JS, Marchin GL, Klabunde KJ, Stoimenov P, Bohra L. Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins. Curr Microbiol 2002;44:49-55.
54. Richards R, Li W, Decker S, Davidson C, Koper O, Zaikovski V, et al. Consolidation of metal oxide nanocrystals. Reactive pellets with a controllable pore structure that represent a new family of porous, inorganic materials. ‎J Am Chem Soc 2000;122:4921-5.
55. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002;18:6679-86.
56. Kwak K, Kim C. Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Aust Rheol J 2005;17:35-40.
57. Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 2009;33:587-90.
58. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia 2008;4:707-16.
59. Mohammad G, Mishra VK, Pandey HP. Antioxidant properties of some nanoparticle may enhance wound healing in the T2DM patient. Digest J Nanomater Biostruct 2008;3:159-62.
60. Han G, Martinez LR, Mihu MR, Friedman AJ, Friedman JM, Nosanchuk JD. Nitric oxide releasing nanoparticles are therapeutic for Staphylococcus aureus abscesses in a murine model of infection. PloS One 2009;4:e7804.
61. Lichter JA, Rubner MF. Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations. Langmuir 2009;25:7686-94.
62. Waschinski CJ, Tiller JC. Poly (oxazoline) s with telechelic antimicrobial functions. Biomacromolecules 2005;61:235-43.
63. Anderson EB, Long TE. Imidazole-and imidazolium-containing polymers for biology and material science applications. Polymer 2010;51:2447-54.
64. Carraher CE, Sabir TS, Roner MR, Shahi K, Bleicher RE, Roehr JL, et al. Synthesis of organotin polyamine ethers containing acyclovir and their preliminary anticancer and antiviral activity. J Inorg Organomet Polym Mater 2006;16:249-57.
65. Munoz-Bonilla A, Fernandez-Garcia M. Polymeric materials with antimicrobial activity. Prog Polym Sci 2012;37:281-339.
66. Chung YC, Wang HL, Chen YM, Li SL. Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresource Technol 2003;88:179-84.
67. Denyer SP, Stewart GS. Mechanisms of action of disinfectants. Int Biodeterior Biodegradation 1998;41:261-8.
68. Sauvet G, Fortuniak W, Kazmierski K, Chojnowski J. Amphiphilic block and statistical siloxane copolymers with antimicrobial activity. J Polym Sci A Polym Chem 2003;41:2939-48.
69. Bankova M, Manolova N, Markova N, Radoucheva T, Dilova K, Rashkov I. Hydrolysis and antibacterial activity of polymers containing 8-quinolinyl acrylate. J Bioact Compat Polymers 1997;124:294-307.
70. Zhou C, Qi X, Li P, Chen WN, Mouad L, Chang MW, et al. High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of α-aminoacid-N-carboxy anhydrides. Biomacromolecules 2009;111:60-7.
71. Nonaka T, Hua L, Ogata T, Kurihara S. Synthesis of water‐soluble thermosensitive polymers having phosphonium groups from methacryloyloxyethyl trialkyl phosphonium chlorides–N‐isopropylacrylamide copolymers and their functions. J Appl Poly Sci 2003;87:386-93.
72. Park ES, Moon WS, Song MJ, Kim MN, Chung KH, Yoon JS. Antimicrobial activity of phenol and benzoic acid derivatives. Int Biodeterior Biodegradation 2001;47:209-14.
73. Kim JH, Park ES, Shim JH, Kim MN, Moon WS, Chung KH, Yoon JS. Antimicrobial activity of p-Hydroxyphenyl acrylate derivatives. J Agric Food Chem 2004;52:7480-3.
74. Subramanyam E, Mohandoss S, Shin HW. Synthesis, characterization, and evaluation of antifouling polymers of 4‐acryloyloxybenzaldehyde with methyl methacrylate. J Appl Polym Sci 2009;112:2741-9.
75. Kenawy ER, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 2007;8:1359-84.
76. Kesler Shvero D, Abramovitz I, Zaltsman N, Perez Davidi M, Weiss EI, Beyth N. Towards antibacterial endodontic sealers using quaternary ammonium nanoparticles. Int Endodontic J 2013;46:747-54.
77. Lee DS, Woo JY, Ahn CB, Je JY. Chitosan–hydroxycinnamic acid conjugates: Preparation, antioxidant and antimicrobial activity. Food Chem 2014;148:97-104.
78. Tin S, Sakharkar KR, Lim CS, Sakharkar MK. Activity of chitosans in combination with antibiotics in Pseudomonas aeruginosa. Int J Biol Sci 2009;5:153.
79. Ibrahim M, Tao Z, Hussain A, Chunlan Y, Ilyas M, Waheed A, et al. Deciphering the role of Burkholderia cenocepacia membrane proteins in antimicrobial properties of chitosan. Arch Microbiol 2014;196:9-16.
80. Di Gianvincenzo P, Marradi M, Martínez-Avila OM, Bedoya LM, Alcami J, Penades S. Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents. Bioorganic Med Chem Lett 2010;20:2718-21.
81. Lara HH, Ayala-Nunez NV, Turrent LD, Padilla CR. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 2010;26:615-21.
82. Bowman MC, Ballard TE, Ackerson CJ, Feldheim DL, Margolis DM, Melander C. Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc 200813;130:6896-7.
83. Sametband M, Shukla S, Meningher T, Hirsh S, Mendelson E, Sarid R, et al. Effective multi-strain inhibition of influenza virus by anionic gold nanoparticles. Med Chem Comm 2011;2:421-3.
84. Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small 2010;6:12-21.
85. Simpson CA, Huffman BJ, Gerdon AE, Cliffel DE. Unexpected toxicity of monolayer-protected gold clusters eliminated by PEG-thiol place exchange reactions. Chem Res Tox 2010;23:1608-16.
86. Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjugate Chem 2009;20:1497-502.
87. Lu L, Sun RW, Chen R, Hui CK, Ho CM, Luk JM, et al. Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Ther 2008;13:253.
88. Sun L, Singh AK, Vig K, Pillai SR, Singh SR. Silver nanoparticles inhibit replication of the respiratory syncytial virus. J Biomed Nanotechnol 2008;4:149-58.
89. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotech 2005;3:6.
90. Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 2008;18:1482-4.
91. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, et al. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 2009;22:235-42.
92. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 2009;5:382-6.
93. Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ, et al. Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by a double emulsion method. J Controlled Release 1998;50:31-40.
94. Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D, L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behaviour. J Controlled Release 1993;25:89-98.
95. Puglisi G, Fresta M, Giammona G, Ventura CA. Influence of the preparation conditions on poly (ethyl cyanoacrylate) nanocapsule formation. Int J Pharm 1995;125:283-7.
96. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 1997;14:1431-6.
97. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 1997;63:125-32.
98. Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Delivery Rev 2006;58:1456-9.
99. Lian T, Ho RJ. Trends and developments in liposome drug delivery systems. J Pharm Sci 2001;90:667-80.
100. Johnson SM, Bangham AD, Hill MW, Korn ED. Single bilayer liposomes. Biochim Biophys Acta 1971;233:820-6.
101. Alipour M, Halwani M, Omri A, Suntres ZE. Antimicrobial effectiveness of liposomal polymyxin B against resistant Gram-negative bacterial strains. Int J Pharm 2008;355:293-8.
102. Kim HJ, Jones MN. The delivery of benzyl penicillin to Staphylococcus aureus biofilms by use of liposomes. J Liposome Res 2004;14:123-39.
103. Fielding RM, Lewis RO, Moon-McDermott L. Altered tissue distribution and elimination of amikacin encapsulated in unilamellar, low-clearance liposomes (MiKasome®). Pharm Res 1998;15:1775-81.
104. Onyeji CO, Nightingale CH, Marangos MN. Enhanced killing of methicillin-resistant Staphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin. Infection 1994;22:338-42.
105. Takemoto K, Yamamoto Y, Ueda Y, Sumita Y, Yoshida K, Niki Y. Comparative study on the efficacy of AmBisome and Fungizone in a mouse model of pulmonary aspergillosis. J Antimicrob Chemothe 2006;57724-31.
106. Schumacher I, Margalit R. Liposome‐encapsulated ampicillin: Physicochemical and antibacterial properties. J Pharm Sci 1997;86:635-41.
107. Omri A, Suntres ZE, Shek PN. Enhanced activity of liposomal polymyxin B against Pseudomonas aeruginosa in a rat model of lung infection. Biochem pharmacol 2002;64:1407-13.
108. Umamaheshwari RB, Jain NK. Receptor-mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori. J Drug Target 2003;11:415-24.
109. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science 1994;263:1600-3.
110. Espuelas MS, Legrand P, Loiseau PM, Bories C, Barratt G, Irache JM. In vitro antileishmanial activity of amphotericin B loaded in poly (ε-caprolactone) nanospheres. J Drug Target 2002;10:593-9.
111. Pandey R, Khuller GK. Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model. J Antimicrob Chemother 2006;57:1146-52.
112. Berton M, Turelli P, Trono D, Stein C, Allémann E, Gurny R. Inhibition of HIV-1 in cell culture by oligonucleotide-loaded nanoparticles. Pharm Res 2001;18:1096-101.
113. Ahmad Z, Pandey R, Sharma S, Khuller GK. Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis 2006;48:171.
114. Turos E, Shim JY, Wang Y, Greenhalgh K, Reddy GS, Dickey S, et al. Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorganic Med Chem Lett 2007;17:53-6.
115. Mosqueira VC, Loiseau PM, Bories C, Legrand P, Devissaguet JP, Barratt G. Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice. Antimicrob Agents Chemother 2004;48:1222-8.
116. Tyagi R, Lala S, Verma AK, Nandy AK, Mahato SB, Maitra A, Basu MK. Targeted delivery of arjunglucoside I using surface hydrophilic and hydrophobic nanocarriers to combat experimental leishmaniasis. J Drug Targ 2005 13:161-71.
117. Espuelas MS, Legrand P, Campanero MA, Appel M, Cheron M, Gamazo C, et al. Polymeric carriers for amphotericin B: in vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice. J Antimicrob Chemoth 2003;52:419-27.
118. Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK. Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharma Sci 2009;38:185-96.
119. Gillies ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today 2005;10:1035-43.
120. Carmona Ribeiro AM, Barbassa L, De Melo LD. Antimicrobial biomimetics. In: Biomimetic Based Applications; 2011.
121. Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discovery Technol 2009;6:43-51.
122. Chen CZ, Cooper SL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials 2002;23:3359-68.
123. Cheng Y, Qu H, Ma M, Xu Z, Xu P, Fang Y, et al. Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. Eur J Med Chem 2007;42:1032-8.
124. Abeylath SC, Turos E, Dickey S, Lim DV. Glyconanobiotics: novel carbohydrate nanoparticle antibiotics for MRSA and Bacillus anthracis. Bioorganic Med Chem 2008;165:2412-8.
125. Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT. Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 2001;1:18-21.
126. Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 2011;19:129-41.
127. Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Delivery Rev 2002;54:S131-55.
128. Gilligan PH. Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev 1991;4:35-51.
129. Souto EB, Wissing SA, Barbosa CM, Müller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm 2004;278:71-7.
130. Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 2002;23:241-5.
131. Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis 2005;85:227-34.
132. Sanna V, Gavini E, Cossu M, Rassu G, Giunchedi P. Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: In‐vitro characterization, ex‐vivo and in‐vivo studies. J Pharma Pharmacol 2007;59:1057-64.
133. Souto EB, Müller RH. SLN and NLC for topical delivery of ketoconazole. J Microencapsul 2005;22:501-10.
134. Jain D, Banerjee R. Comparison of ciprofloxacin hydrochloride‐loaded protein, lipid, and chitosan nanoparticles for drug delivery. J Biomed Maters Res B 2008;861:105-12.
135. Ponti J, Sabbioni E, Munaro B, Broggi F, Marmorato P, Franchini F, et al. Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis 2009;24:439-45.
136. Dey S, Bakthavatchalu V, Tseng MT, Wu P, Florence RL, Grulke EA, et al. Interactions between SIRT1 and AP-1 reveal a mechanistic insight into the growth promoting properties of alumina (Al2O3) nanoparticles in mouse skin epithelial cells. Carcinogenesis 2008;29:1920-9.
137. Arora S, Jain J, Rajwade JM, Paknikar KM. Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 2008;179:93-100.
138. Simon M, Barberet P, Delville MH, Moretto P, Seznec H. Titanium dioxide nanoparticles induced intracellular calcium homeostasis modification in primary human keratinocytes. Towards an in vitro explanation of titanium dioxide nanoparticles toxicity. Nanotoxicology 2011;5:125-39.
139. Brammer KS, Oh S, Gallagher JO, Jin S. Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Lett 2008F;8:786-93.
140. Oh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. Biomed Mater Res A 2006;78:97-103.
141. Chandran PR, Naseer M, Udupa N, Sandhyarani N. Size-controlled the synthesis of biocompatible gold nanoparticles and their activity in the oxidation of NADH. Nanotechnology 2011;23:015602.
142. Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, et al. Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res A 2007;80:333-41.
143. Li Z, Yang R, Yu M, Bai F, Li C, Wang ZL. Cellular level biocompatibility and biosafety of ZnO nanowires. J Phys Chem C 2008;112:20114-7.
144. Maneewattanapinyo P, Banlunara W, Thammacharoen C, Ekgasit S, Kaewamatawong T. An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci 2011;73:1417-23.
145. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008;29:1912-9.
146. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, et al. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol 2004;77:347-57.
147. Adibhatla RM, Hatcher JF. Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antiox Redox Signa 2010;12:125-69.
148. Beyth N, Houri-Haddad Y, Baraness-Hadar L, Yudovin-Farber I, Domb AJ, Weiss EI. Surface antimicrobial activity and biocompatibility of incorporated polyethyleneimine nanoparticles. Biomaterials 2008;31:4157-63.
149. Niamprem P, Srinivas SP, Tiyabooncha W. Development and characterization of indomethacin-loaded mucoadhesive nanostructured lipid carriers for topical ocular delivery. Int J Appl Pharm 2018:10:91-6.
150. Vishvakrama P, Sharma S. Liposomes: an overview. J Drug Delivery Ther 2014:24:47-55.
151. Crucho CI, Barros MT. Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C 2017;80:771-84.
196 Views | 183 Downloads
How to Cite
Mahavir, J., Sneh, L., Preeti, K., & Tulika, M. (2018). APPLICATION OF NANOSTRUCTURES IN ANTIMICROBIAL THERAPY. International Journal of Applied Pharmaceutics, 10(4), 11-25.
Review Article(s)