DRY POWDER FORMULATION FROM PHYSALIS PERUVIANA L. FRUITS EXTRACT WITH ANTIDIABETIC ACTIVITY FORMULATED VIA CO-SPRAY DRYING

  • CARLOS A. BERNAL Universidad de Cartagena–Faculty of Pharmaceutical Sciences–Research Group Tecnología Farmacéutica, Cosmética y de Alimentos (GITFCA). Zaragocilla, Calle 29 # 50-50, Cartagena, Bolívar (130014), Colombia
  • FREDDY A. RAMOS Universidad Nacional de Colombia–Sede Bogotá–Science Faculty–Chemistry Department–Research Group Estudio y aprovechamiento de productos naturales marinos y frutas de Colombia–Carrera 30 # 45-03, Bogotá D. C., (111321), Colombia
  • YOLIMA BAENA Universidad Nacional de Colombia–Sede Bogota–Science Faculty–Pharmacy Department–Research Group Technology of Natural Products–Carrera 30 # 45-03, Bogotá D. C., (111311), Colombia

Abstract

Objective: To establish the drying conditions of an extract of fruits of Physalis peruviana using spray drying (SD) technique by applying a statistical experimental design (SED), to obtain powders for direct compression, retaining the antidiabetic activity.


Methods: A 2[6-2] fractional factorial SED was used to get a suitable SD operating conditions to produce powder extract of P. peruviana with high process yield, acceptable moisture content, good flowability, low hygroscopicity and satisfactory morphological and particle size. Operating variables studied were air inlet temperature, atomization air flow rate, feed-rate pump, aspiration rate, extract concentration and coadjuvant proportion. P. peruviana powder obtained under the operating conditions selected was evaluated by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and by in vitro α-amylase inhibition assay, to prove that the antidiabetic activity was remained after the SD.


Results: Injection temperature (120 °C), atomization air flow rate (600 l/h), pump setting (5 %), aspirator setting (100 %), extract concentration (7.5 % p/p) and extract: coadjuvant ratio (1:0.75), were the operational conditions selected. Dry extract showed an amorphous state by XRPD and a probable protective effect of coadjutant on the extract, characterized by DSC and the antidiabetic in vitro assay. Antidiabetic activity of the extract remained after its transformation to a solid state by SD in the chosen conditions.


Conclusion: The results suggest that coprocessed extract could be used for the production of compressed solids or employed as an intermediate herbal product for the treatment of diabetes.

Keywords: Physalis peruviana, Pharmaceutics properties, Statistical experimental design, Spray drying, Herbal product, Antidiabetic activity

References

1. Correa J, Bernal H. Especies vegetables promisorias de los países del convenio Andres Bello. Vol. VII. Santafe de Bogota, Colombia; 1992.
2. Garcia H. Flora medicinal de colombia botánica medica. Vol. 1. Bogota, Colombia: Instituto de Ciencias Naturales, Universidad Nacional de Colombia; 1974.
3. Bernal CA, Aragón M, Baena Y. Dry powder formulation from fruits of Physalis peruviana L. standardized extract with hypoglycemic activity. Powder Technol 2016;301:839–47.
4. Rey DP, Ospina LF, Aragon DM. Inhibitory effects of an extract of fruits of Physalis peruviana on some intestinal carbohydrases. Rev Colomb Ciencias Quimico Farm 2015; 44:72–89.
5. Sathyadevi M, Subramanian SP. Physalis peruviana L. fruits avert oxidative stress in pancreatic and hepatic tissues of streptozotocin-induced diabetic rats. Der Pharm Lett 2015;7:59–73.
6. Sorimuthu S, Sathyadevi M. Extraction, isolation and characterization of bioactive flavonoids from the fruits of Physalis peruviana linn extract. Asian J Pharm Clin Res 2015;8:152–7.
7. Franco LA, Ocampo YC, Gomez HA, De la Puerta R, Espartero JL, Ospina LF. Sucrose esters from Physalis peruviana calyces with anti-inflammatory activity. Planta Med 2014;80:1605–14.
8. Toro RM, Aragón DM, Ospina LF, Ramos FA, Castellanos L. Phytochemical analysis, antioxidant and anti-inflammatory activity of calyces from Physalis peruviana. Nat Prod Commun 2014;9:1573–5.
9. Neogi P, Sahai M, Ray AB. Withaperuvins F and G, two withanolides of Physalis peruviana roots. Phytochemistry 1986;26:243–7.
10. Morton JF. Fruits of warm climates. Miami, Florida: Creative Resorces Systems Inc; 1987.
11. Ospina LF, Pinzon R. Plantas usadas como antidiabéticas en la medicina popular colombiana. Rev Colomb Ciencias Quimico Farm 1995;23:81–94.
12. Wu SJ, Tsai JY, Chang SP, Lin DL, Wang SS, Huang SN. Antioxidant activities of Physalis peruviana. Biol Pharm Bull 2005;28:963–6.
13. Ahmad S, Malik A, Yasmin R, Ullah N, Gul W, Khan Pir, et al. Withanolides from Physalis peruviana. Phytochemistry 1999;50:647–51.
14. Bernal CA, Castellanos L, Aragon DM, Martínez-Matamoros D, Jimenez C, Baena Y, et al. Peruvioses A to F, sucrose esters from the exudate of Physalis peruviana fruit as ?-amylase inhibitors. Carbohydr Res 2018;461:4–10.
15. Gopi G, Kannan K. Formulation development and optimization of nateglinide-loaded ethyl cellulose nanoparticles by box-behnken design. Int J Pharm Pharm Sci 2015;7:310-5.
16. Calixto JB. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Brazilian J Med Biol Res 2000;33:179–89.
17. Mustarichie R, Priambodo D. Tablet formulation from meniran (Phyllanthus niruri L.) extract with a direct compression method. Int J Appl Pharm 2018;10:98-102.
18. Souza CRF, Oliveira WP. Powder properties and system behavior during spray drying of Bauhinia forficata link extract. Dry Technol 2006;24:735–49.
19. Patel H, Gohel M. A review on development of multifunctional co-processed excipient. J Crit Rev 2016;3:48-54.
20. Re MI. Formulating drug delivery systems by spray drying. Dry Technol 2006;24:433–46.
21. Maa YF, Costantino HR, Nguyen PA, Hsu CC. The effect of operating and formulation variables on the morphology of spray-dried protein particles. Pharm Dev Technol 1997; 2:213–23.
22. Wang S, Langrish T. A review of process simulations and the use of additives in spray drying. Food Res Int 2009;42:13–25.
23. Cal K, Sollohub K. Spray drying technique. I: Hardware and process parameters. J Pharm Sci 2010;99:575–86.
24. Sollohub K, Cal K. Spray drying technique: II. Current applications in pharmaceutical technology. J Pharm Sci 2010;99:587–97.
25. Gallo L, Llabot JM, Allemandi D, Bucala V, Pina J. Influence of spray-drying operating conditions on Rhamnus purshiana (Cáscara sagrada) extract powder physical properties. Powder Technol 2011;208:205–14.
26. Gallo L, Ramirez-Rigo MV, Pina J, Palma S, Allemandi D, Bucala V. Valeriana officinalis dry plant extract for direct compression: preparation and characterization. Sci Pharm 2012;80:1013–26.
27. Gallo L, Pina J, Bucala V, Allemandi DA, Ramirez Rigo MV. Development of a modified-release hydrophilic matrix system of a plant extract based on co-spray-dried powders. Powder Technol 2013;241:252–62.
28. Palma SD, Manzo RH, Allemandi DA. Dry plant extracts loaded on fumed silica for direct compression: preparation and preformulation. Pharm Dev Technol 1999;4:523–30.
29. Adriany R, Anwar E, Andrajati R, Hanafi M. Formulation of an orodispersible tablet of Luffa acutangula (L) roxb using novel co-processed via spray dried excipient. Int J Pharm Pharm Sci 2015;7:124-9.
30. United States Pharmacopeia and National Formulary, USP 40–NF 35. Rockville, MD: The United States Pharmacopeial Convention; 2017.
31. Martin AN, Sinko PJ, Singh Y. Martin’s physical pharmacy and pharmaceutical sciences. Physical-chemical and biopharmaceutical principles in the pharmaceutical sciences, 6th ed. Baltimore, MD: Lippincott Williams and Wilkins; 2011.
32. Montgomery DC, Pina R, Zetina G. Diseno y análisis de experimentos. 2a. Mexico: Limusa Wiley; 2010.
33. Rinderknecht H, Wilding P, Haverback BJ. A new method for the determination of alpha-amylase. Experientia 1967;23:805.
34. Hansawasdi C, Kawabata J, Kasai T. ?-amylase inhibitor from roselle (Hibiscus sabdariffa Linn.) tea. Biosci Biotechnol Biochem 2000;64:1041–3.
35. Banerjee A, Maji B, Mukherjee S, Chaudhuri K, Seal T. In vitro anti-diabetic and antioxidant activities of ethanol extract of Tinospora sinensis. Int J Curr Pharm 2017;9:42–7.
36. Tonon RV, Brabet C, Hubinger MD. Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. J Food Eng 2008;88:411–8.
37. Buchi. Mini Spray Dryer B-290; 2017. Available from: http://www.buchi.com/en/products/spray-drying-and-encapsulation/mini-spray-dryer-b-290. [Last accessed on 03 Nov 2017]
38. Ribeiro AL, Pereira W. Spray drying conditions and encapsulating composition effects on formation and properties of sodium diclofenac microparticles. Powder Technol 2007;171:7–14.
39. Couto RO, Martins FS, Chaul LT, Conceicao EC, Freitas LA, Bara M, et al. Spray drying of Eugenia dysenterica extract: effects of in-process parameters on product quality. Rev Bras Farmacogn 2013;23:115–23.
40. Gonnissen Y, Gonçalves SIV, De Geest BG, Remon JP, Vervaet C. Process design applied to optimise a directly compressible powder produced via a continuous manufacturing process. Eur J Pharm Biopharm 2008;68:760–70.
41. Vasconcelos EA, Medeiros MG, Raffin FN, Moura TF. Influência da temperatura de secagem e da concentração de Aerosil® 200 nas características dos extratos secos por aspersao da Schinus terebinthifolius raddi (Anacardiaceae). Brazilian J Pharmacogn 2005;15:243–9.
42. Moreira GE, Costa MG, de Souza AC, de Brito ES, de Medeiros MdeF, de Azeredo HM. Physical properties of spray dried Acerola pomace extract as affected by temperature and drying aids. LWT-Food Sci Technol 2009;42:641–5.
43. Jangam SV, Thorat BN. Optimization of spray drying of ginger extract. Dry Technol 2010;28:1426–34.
44. Rowe RC, Sheskey PJ, Owen SC. AP Association, Handbook of pharmaceutical excipients. 6th ed. London; Chicago: Pharmaceutical Press; American Pharmacists Association; 2009.
45. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res 2008;25:999–1022.
46. Aulton ME. Aultons pharmaceutics the design and manufacture of medicines. 3rd ed. Edinburgh New York, United States: Churchill Livingstone; 2007.
47. Callahan JC, Cleary GW, Elefant M, Kaplan G, Kensler T, Nash RA. Equilibrium moisture content of pharmaceutical excipients. Drug Dev Ind Pharm 1982;8:355–69.
48. Cano Chauca M, Stringheta PC, Ramos AM, Cal Vidal J. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov Food Sci Emerg Technol 2005;6:420–8.
Statistics
86 Views | 27 Downloads
How to Cite
BERNAL, C. A., RAMOS, F. A., & BAENA, Y. (2019). DRY POWDER FORMULATION FROM PHYSALIS PERUVIANA L. FRUITS EXTRACT WITH ANTIDIABETIC ACTIVITY FORMULATED VIA CO-SPRAY DRYING. International Journal of Applied Pharmaceutics, 11(3), 109-117. https://doi.org/10.22159/ijap.2019v11i3.29520
Section
Original Article(s)