CHEMICAL PROFILE OF TWO JASMINUM SAMBAC L. (AIT) CULTIVARS CULTIVATED IN EGYPT–THEIR MEDIATED SILVER NANOPARTICLES SYNTHESIS AND SELECTIVE CYTOTOXICITY

Authors

  • SEHAM S. EL-HAWARY Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
  • HALA M. EL-HEFNAWY Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
  • SAMIR M. OSMAN Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
  • EMAN S. MOSTAFA Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October City, Giza, Egypt
  • FATMA ALZAHRAA MOKHTAR Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
  • MOHAMED A. EL-RAEY Phytochemistry and Plant Systematic Department, National Research Centre, Dokki, Cairo, Egypt

DOI:

https://doi.org/10.22159/ijap.2019v11i6.33646

Keywords:

Jasminum sambac, AgNPs, HPLC-PDA-MSMS, Cytotoxicity, Green synthesis

Abstract

Objective: Evaluation of two Jasminum sambac L. (Ait) cultivars; Arabian Nights (JSA) and Grand Duke of Tuscany (JSG) ethanolic leaves extracts as reducing agents for the green synthesis of silver nanoparticles (AgNPs) and evaluation of their cytotoxicity against MCF-7 breast cancer and 5637 bladder cancer cell lines and chemical profiling of the two cultivars.

Methods: The synthesis of silver nanoparticles (AgNPs) by the two cultivars and characterization of AgNPs by ultraviolet (UV)–visible spectroscopy, Transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR). Additionally, the use of The high-performance liquid chromatography coupled with photodiode array-mass-mass-spectroscopy (HPLC-PDA-MS/MS) for chemical profiling of both cultivars and evaluation of total leaves extracts and corresponding nanoparticles towards MCF-7 and 5637 cell lines compared to aneuploidy immortal keratinocyte (Ha Cat) normal cells by neutral cell assay.

Results: The green synthesized AgNPs (of an average size range of 8.83 and 11.24 nm for JSA and JSG, respectively) exhibited cytotoxicity against MCF-7 and 5637 cell lines. The IC50 was determined for each total extract JSA (15.29±2.16 μg/ml) and JSG (20.28±1.20 μg/ml) and corresponding AgNPs 17.32±2.22 μg/ml and 6.32±1.01μg/ml for JSA and JSG, respectively. The IC50 of JSA and JSG against 5637 bladder cancer cell line were 13.76±1.11 μg/ml and 50.69±3.75 μg/ml, while the corresponding AgNPs showed IC50 of 5.54±0.88 μg/ml and 27.89±2.84 μg/ml, respectively. The HPLC-PDA-MS/MS allowed the identification of 59 compounds; 10 simple phenols, 17 flavonoids; quercetin and kaempferol glycosides, 2 lignans, and 30 secoiridoids; oleuropein, molihauside, and sambacoside.

Conclusion: This study proved that JSA is an excellent source for the synthesis of AgNPs with optimum characters and enhanced activities toward MCF-7 and 5637 cell lines in correlation to identified compounds.

Downloads

Download data is not yet available.

References

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin 2018;68:394-424.

Trenta P, Calabro F, Cerbone L, Sternberg CN. Chemotherapy for muscle-invasive bladder cancer. Curr Treat Option On 2016;17:6.

Kondepati VR, Heise HM, Backhaus J. Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy. Anal Bioanal Chem 2008;390:125.

Sanganna B, Chitme HR, Vrunda K, Jamadar MJ. Antiproliferative and antioxidant activity of leaves extracts of Moringa oleifera. Int J Curr Pharm Res 2016;8:54-6.

Subbiah RP, Lee H, Veerapandian M, Sadhasivam S, Seo SW, Yun K. Structural and biological evaluation of a multifunctional SWCNT-AgNPs-DNA/PVA bio-nanofilm. Anal Bioanal Chem 2011;400:547-60.

Babington R, Matas S, Marco MP, Galve R. Current bioanalytical methods for detection of penicillins. Anal Bioanal Chem 2012;403:1549-66.

Sarangi MK, Padhi S. Colon targeted drug delivery system an approach for treating colonic ailments. J Crit Rev 2015;2:9-10.

Campbell FW, Compton RG. The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem 2010;396:241-59.

Zook JM, Long SE, Cleveland D, Geronimo CLA, MacCuspie RI. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV–visible absorbance. Anal Bioanal Chem 2011;401:1993.

Menon S, Agarwal H, Kumar SR, Kumar SV. Green synthesis of silver nanoparticles using medicinal plant acalypha indica leaf extracts and its application as an antioxidant and antimicrobial agent against foodborne pathogens. Int J Appl Pharma 2017;9:42-50.

Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008;176:1-12.

Antony E, Sathiavelu M, Arunachalam S. Synthesis of silver nanoparticles from the medicinal plant Bauhinia acuminata and Biophytum sensitivum–a comparative study of its biological activities with plant extract. Int J Appl Pharm 2017;9:22-9.

Murugesan S, Bhuvaneswari S, Sivamurugan V. Green synthesis, characterization of silver nanoparticles of a marine red alga Spyridia fusiformis and their antibacterial activity. Int J Pharm Pharm Sci 2017;9:192-7.

Sukirtha R, Priyanka KM, Antony JJ, Kamalakkannan S, Thangam R, Gunasekaran P, et al. Cytotoxic effect of green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Proc Biochem 2012;47:273-9.

Täckholm V. Ancient Egypt, landscape, flora and agriculture. The Nile, biology of an ancient river: Springer; 1976. p. 51-68.

Ito Y, Sugimoto A, Kakuda T, Kubota K. Identification of potent odorants in Chinese jasmine green tea scented with flowers of Jasminum sambac. J Agric Food Chem 2002;50:4878-84.

Khan M, Rizwani GH, Zahid H. Standardization of dried flowers of Moringa oleifera (Lamk.) and Jasminum sambac (L.) Ait according to who guidelines. Int J Pharm Pharm Sci 2015;7:19-22.

Rambabu B, Patnaik R. Anti diabetic and anti ulcer activity of ethanolic flower extract of Jasminum sambac in rats. Asian J Res Chem 2014;7:580.

Sengar N, Joshi A, Prasad SK, Hemalatha S. Anti-inflammatory, analgesic and anti-pyretic activities of standardized root extract of Jasminum sambac. J Ethnopharmacol 2015;160:140-8.

Kunhachan P, Banchonglikitkul C, Kajsongkram T, Khayungarnnawee A, Leelamanit W. Chemical composition, toxicity, and vasodilatation effect of the flowers extract of Jasminum sambac (L.) Ait.“G. Duke of Tuscany”. J Evid Based Complement Altern Med 2012. p. 9-18. http://dx.doi.org/10.1155/2012/471312

Moloudi MR, Moqbel H, Dastan D, Hassanzadeh K, Nouri B, Izadpanah E. Effect of hydro-alcoholic extract of jasminum sambac on morphine withdrawal symptoms in rats. Sci J Kurdistan Univ Med Sci 2018;23:1-7.

Rahman MA, Hasan MS, Hossain MA, Biswas N. Analgesic and cytotoxic activities of Jasminum sambac (L.) aiton. Pharmacologyonline 2011;1:124-31.

Houghton P, Fang R, Techatanawat I, Steventon G, Hylands PJ, Lee C. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods 2007;42:377-87.

Kalaiselvi M, Narmadha R, Ragavendran P, Ravikumar G, Gomathi D, Sophia D, et al. In vivo and in vitro antitumor activity of Jasminum sambac (Linn) Ait Oleaceae flower against Dalton’s ascites lymphoma induced swiss albino mice. Int J Pharm Pharm Sci 2011;4:145-7.

Rivera S, Vilaro F, Canela R. Determination of carotenoids by liquid chromatography/mass spectrometry: effect of several dopants. Anal Bioanal Chem 2011;400:1339-46.

Russo M, Fanali C, Tripodo G, Dugo P, Muleo R, Dugo L, et al. Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: application to different Italian varieties. Anal Bioanal Chem 2018;410:3507-20.

Madhavi S, Rani AP. Bioanalytical method development and validation for the determination of sofosbuvir from human plasma. Int J Pharm Pharm Sci 2017;9:35-41.

Repetto G, Del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 2008;3:1125.

Goodin DS, Frohman E, Garmany G, Halper J, Likosky W, Lublin F. Disease modifying therapies in multiple sclerosis. Neurology 2002;58:169-78.

Gupta A, Singhal P, Shrivastav PS, Sanyal M. Application of a validated ultra performance liquid chromatography–tandem mass spectrometry method for the quantification of darunavir in human plasma for a bioequivalence study in Indian subjects. J Chromatogr B 2011;879:2443-53.

Sobeh M, Mahmoud MF, Abdelfattah MA, El-Beshbishy HA, El-Shazly AM, Wink M. Albizia harveyi: phytochemical profiling, antioxidant, antidiabetic and hepatoprotective activities of the bark extract. Med Chem Res 2017;26:3091-105.

Noginov M, Zhu G, Bahoura M, Adegoke J, Small C, Ritzo B, et al. The effect of gain and absorption on surface plasmons in metal nanoparticles. Appl Phys B 2007;86:455-60.

Ar VN, S0anchez Mendieta V, Camacho Lopez MA, Gomez Espinosa rM, Arenas Alatorre JA. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater Lett 2008;62:3103-5.

Shankar SS, Ahmad A, Pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 2003;13:1822-6.

Wang H, Cui F, Zhao G. Phenols from buds of Jasminum officinale. Chin J Exp Trad Med Form 2012;14:39-41.

Sanz M, de Simon BF, Cadahia E, Esteruelas E, Munoz AM, Hernandez T, et al. LC‐DAD/ESI‐MS/MS study of phenolic compounds in ash (Fraxinus excelsior L. and F. americana L.) heartwood. Effect of toasting intensity at cooperage. J Mass Spectrom 2012;47:905-18.

Rajesh KD, Vasantha S, Panneerselvam A, Rajesh NV, Jeyathilakan N. Phytochemical analysis in vitro antioxidant potential and gas chromatography mass spectrometry studies of dicranopteris linearis. Asian J Pharm Clin Res 2016;9:1-6.

Lommen A, Godejohann M, Venema D, Hollman P, Spraul M. Application of directly coupled HPLC− NMR− MS to the identification and confirmation of quercetin glycosides and phloretin glycosides in apple peel. Anal Chem 2000;72:1793-7.

Tanahashi T, Nagakura N, Kuwajima H, Takaishi K, Inoue K, Inouye H. Secoiridoid glucosides from Jasminum mesnyi. Phytochemistry 1989;28:1413-5.

Ngo QMT, Lee HS, Nguyen VT, Kim JA, Woo MH, Min BS. Chemical constituents from the fruits of Ligustrum japonicum and their inhibitory effects on T cell activation. Phytochemistry 2017;141:147-55.

Castro J, Krishna MB, Choiniere JR, Marcus RK. Analysis of caffeic acid derivatives in echinacea extracts by liquid chromatography particle beam mass spectrometry (LC–PB/MS) employing electron impact and glow discharge ionization sources. Anal Bioanal Chem 2010;397:1259-71.

Abdelmohsen M, Nafiz N, Seif el Nasr M. Microwave-assisted extraction of bio-active compounds (phenolics and alkamides) from Echinacea purpurea. Int J Pharma Pharma Sci 2014;6:265-8.

Zhao G, Xia J, Dong J. Glycosides from flowers of Jasminum officinale L. var. grandiflorum. Yao xue xue bao. Acta Pharm Sin 2007;42:1066-9.

Tomassini L, Ventrone A, Frezza C, Serafini I, Bianco A, Cometa MF. Lignans and secoiridoid glycosides from the stem barks of Jasminum tortuosum. Nat Prod Res 2018;32:1853-7.

Tanahashi T, Sakai T, Takenaka Y, Nagakura N, Chen CC. Structure elucidation of two secoiridoid glucosides from Jasminum officinale L. var. grandiflorum (L.) Kobuski. Chem Pharm Bull 1999;47:1582-6.

Taveira M, Ferreres F, Gil-Izquierdo A, Oliveira L, Valentão P, Andrade PB. Fast determination of bioactive compounds from Lycopersicon esculentum mill. leaves. Food Chem 2012;135:748-55.

Mattila P, Hellström J. Phenolic acids in potatoes, vegetables, and some of their products. J Food Compos Anal 2007;20:152-60.

US MR, Zin T, Abdurazak M, Ado Ahmad B. Chemistry and pharmacology of syringin, a novel bioglycoside: a review. Asian J Pharm Clin Res 2015;8:20-5.

Lai XJ, Zhang L, Li JS, Liu HQ, Liu XH, Di LQ, et al. Comparative pharmacokinetic and bioavailability studies of three salvianolic acids after the administration of Salviae miltiorrhizae alone or with synthetical borneol in rats. Fitoterapia 2011;82:883-8.

Zhang Z, Bian B, Yang J, Tian X. Studies on chemical constitutents in roots of Jasminum sambac. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China. J Chin Materia Med 2004;29:237-9.

Llorent Martinez EJ, Gouveia S, Castilho PC. Analysis of phenolic compounds in leaves from endemic trees from Madeira Island. A contribution to the chemotaxonomy of Laurisilva forest species. Ind Crops Prod 2015;64:135-51.

Akhov L, Barl B. Isolation of quercetin glycosides from leaves of sea buckthorn (Hippophae rhamnoides ssp. mongolica). XXVI International Horticultural Congress: Berry Crop Breeding, Production and Utilization for a New Century; 2002. p. 389-95.

Shen YC, Chen CH. Novel secoiridoid lactones from Jasminum multiflorum. J Nat Prod 1989;52:1060-70.

Cao Y, Chu Q, Fang Y, Ye J. Analysis of flavonoids in Ginkgo biloba L. and its phytopharmaceuticals by capillary electrophoresis with electrochemical detection. Anal Bioanal Chem 2002;374:294-9.

Elshamy AI, El Gendy A, Farrag A, Nassar MI. Antidiabetic and antioxidant activities of phenolic extracts of Conyza dioscoridis L. shoots. Int J Pharm Pharm Sci 2015;7:65-72.

Yang JH, Kondratyuk TP, Marler LE, Qiu X, Choi Y, Cao H, et al. Isolation and evaluation of kaempferol glycosides from the fern neocheiropteris palmatopedata. Phytochemistry 2010;71:641-7.

Bhushan B, Sardana S, Bansal G. Acute and sub-acute toxicity study of clerodendrum inerme, jasminum mesnyi hance and callistemon citrinus. J Acute Dis 2014;3:324-7.

Simirgiotis MJ, Silva M, Becerra J, Schmeda Hirschmann G. Direct characterisation of phenolic antioxidants in infusions from four mapuche medicinal plants by liquid chromatography with diode array detection (HPLC-DAD) and electrospray ionisation tandem mass spectrometry (HPLC-ESI–MS). Food Chem 2012;131:318-27.

Takenaka Y, Takahashi T, Nagakura N. Eight minor secoiridoid glucosides with a linear monoterpene unit from Jasminum polyanthum. Chem Pharm Bull 1998;46:1776-80.

Shen YC, Lin SL, Chein CC. Three secoiridoid glucosides from Jasminum lanceolarium. Phytochemistry 1997;44:891-5.

Karima S, Nadine C, Fadila B, Maurice J. Characterization and distribution of flavonoids from flowers in different horticultural types of begonia. Pharmacogn J 2017;9:850-5.

Eyles A, Jones W, Riedl K, Cipollini D, Schwartz S, Chan K, et al. Comparative phloem chemistry of manchurian (Fraxinus mandshurica) and two North American ash species (Fraxinus americana and Fraxinus pennsylvanica). J Chem Ecol 2007;33:1430-48.

Zhao G, Yin Z, Dong J. A new secoiridoid from the flowers of Jasminum officinale L. var. grandiflorum. Yao xue xue bao. Acta Pharm Sin 2008;43:513-7.

Amiot MJ, Fleuriet A, Macheix JJ. Accumulation of oleuropein derivatives during olive maturation. Phytochemistry 1989;28:67-9.

Chen HY, Shen YC, Chen CH. Jasmultiside, a new secoiridoid glucoside from Jasminum multiflorum. J Nat Prod 1991;54:1087-91.

HAO T, Zhang SF, Zhao GQ. Study on quality standard of total iridoid glycosides from Jasminum officinale L. var. grandiflorum [J]. Lishizhen Med Mater Med Res 2013;1:28-31.

El-Sayed NH, Wojcińska M, Drost Karbowska K, Matławska I, Williams J, Mabry TJ. Kaempferol triosides from silphium perfoliatum. Phytochemistry 2002;60:835-8.

Zhang YJ, Liu YQ, Pu XY, Yang CR. Iridoidal glycosides from Jasminum sambac. Phytochemistry 1995;38:899-903.

Tanahashi T, Takenaka Y, Nagakura N. Three secoiridoid glucosides esterified with a linear monoterpene unit and a dimeric secoiridoid glucoside from Jasminum polyanthum. J Nat Prod 1997;60:514-8.

Takenaka Y, Tanahashi T, Taguchi H, Nagakura N, Nishi T. Nine new secoiridoid glucosides from jasminum nudiflorum. Chem Pharm Bull 2002;50:384-9.

Yue Z, Qin H, Li Y, Sun Y, Wang Z, Yang T, et al. Chemical constituents of the root of Jasminum giraldii. Molecules 2013;18:4766-75.

Tanahashi T, Nagakura N, Inoue K, Inouye H, Shingu T. Sambacolignoside, a new lignan-secoiridoid glucoside from Jasminum sambac. Chem Pharm Bull 1987;35:5032-5.

Guo ZY, Li P, Huang W, Wang JJ, Liu YJ, Liu B, et al. Antioxidant and anti-inflammatory caffeoyl phenylpropanoid and secoiridoid glycosides from Jasminum nervosum stems, a Chinese folk medicine. Phytochemistry 2014;106:124-33.

Tanahashi T, Nagakura N, Inoue K, Inouye H, Sambacosides AEF. Novel tetrameric iridoid glucosides from Jasminum sambac. Tetrahedron Lett 1988;29:1793-6.

Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Törrönen AR. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 1999;47:2274-9.

Perez Bonilla M, Salido S, Van Beek TA, de Waard P, Linares Palomino PJ, Sanchez A, et al. Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC–DAD–radical scavenging detection. Food Chem 2011;124:36-41.

Obied HK, Prenzler PD, Ryan D, Servili M, Taticchi A, Esposto S, et al. Biosynthesis and biotransformations of phenol-conjugated oleosidic secoiridoids from olea europaea L. Nat Prod Rep 2008;25:1167-79.

Yin Y, Ying X, Luan H, Zhao Z, Lou J, Wang D, et al. UPLC-DAD/Q-TOF-MS based ingredients identification and vasorelaxant effect of ethanol extract of jasmine flower. J Evid Based Complement Altern Med 2014. http://dx.doi.org/10.1155/2014/707908

Published

07-11-2019

How to Cite

EL-HAWARY, S. S., EL-HEFNAWY, H. M., OSMAN, S. M., MOSTAFA, E. S., MOKHTAR, F. A., & EL-RAEY, M. A. (2019). CHEMICAL PROFILE OF TWO JASMINUM SAMBAC L. (AIT) CULTIVARS CULTIVATED IN EGYPT–THEIR MEDIATED SILVER NANOPARTICLES SYNTHESIS AND SELECTIVE CYTOTOXICITY. International Journal of Applied Pharmaceutics, 11(6), 154–164. https://doi.org/10.22159/ijap.2019v11i6.33646

Issue

Section

Original Article(s)