QUANTIFICATION OF ROPINIROLE HYDROCHLORIDE IN API AND TABLETS BY NOVEL STABILITY-INDICATING RP-HPLC METHOD: IT’S VALIDATION AND FORCED DEGRADATION STUDIES

  • SADASHIVAIAH R. Department of Pharmaceutics, Government College of Pharmacy, #P Kalinga Rao Road, Subbaiah Circle, Bengaluru, Karnataka, India
  • Rohith G. Department of Pharmaceutics, Government College of Pharmacy, #P Kalinga Rao Road, Subbaiah Circle, Bengaluru, Karnataka, India
  • SATHEESHA BABU B. K. Department of Pharmaceutics, Government College of Pharmacy, #P Kalinga Rao Road, Subbaiah Circle, Bengaluru, Karnataka, India

Abstract

Objective: A simple, economical, robust and stability-indicating reverse phase high performance liquid chromatography method was developed and validated for the quantification of ropinirole hydrochloride in API and tablets to achieve shorter retention time, to minimize human error by avoiding the use of buffers and weighing procedure and analyze more number of samples in shorter period of time with good accuracy.


Methods: The chromatographic conditions for separation of ropinirole hydrochloride was carried out using Gemini NX C18 column (15 cm x 4.6 mm), 5 µm particle size with the mobile phase composing of methanol: acetonitrile (70:30 v/v), delivered at flow rate 0.7 ml/min and UV detection wavelength at 250 nm.


Results: The retention time was observed at 2.718 min. The system suitability results were found to be within limits. The method was precise, with lower than 2 %RSD and the calibration curve was linear (r2=1) over a concentration range of 2.5-160 µg/ml. The detection and quantification limit was found to be 0.045 µg/ml and 0.15 µg/ml, respectively. Recovery of the drug was found between 100.09-100.19%. The assay of ropinirole hydrochloride in ROPITOR® and ROPARK® tablets were found to be 100.4 and 103.60 %, respectively. The forced degradation studies were carried out to demonstrate the specificity of the method by exposing the API under conditions of hydrolysis, oxidation, thermal and photolytic as per ICH Q1A(R2) guidelines.


Conclusion: The low coefficient of variation and agreeable recovery confirmed that the newly developed method could be employed for routine analysis of ropinirole hydrochloride in API and tablets.

Keywords: Ropinirole hydrochloride, RP-HPLC, Stability-indicating, Validation, Precision

References

1. Sweetman SC. Martindale: the complete drug reference. 36th ed. London: Pharmaceutical Press; 2009.
2. DeMaagd G, Philip A. Introduction to the pharmacotherapy of parkinson’s disease, with a focus on the use of dopaminergic agents. Pharm Ther 2015;40:590-600.
3. Moursi NM, Elshafeey AH, Hamza MY, Elhadidy RM. Characterization and bioavailability study of ropinirole hydrochloride intranasal mucoadhesive thermoreversible in-situ gel. J Am Sci 2018;14:125-39.
4. Singh ND, Banga AK. Controlled delivery of ropinirole hydrochloride through skin using modulated iontophoresis and microneedles. J Drug Target 2013;21:354-66.
5. Zesiewicz TA, Chriscoe S, Jimenez T, Upward J, VanMeter S. A fixed-dose, dose–response study of ropinirole prolonged release in early stage parkinson's disease. Neurodegener Dis Manag 2017;7:49-59.
6. Raghubabu K, Jagannadharao V, Ramu BK. Assay of ropinirole hydrochloride in pharmaceutical preparations by UV-visible spectrophotometry. Asian J Pharm Anal 2012;2:41-5.
7. Samala A, Sowmya M, Sasikala M, Chatlapelli K. Development and validation of RP-HPLC method for the estimation of ropinirole hydrochloride in tablet dosage forms. J Chem Pharm Res 2014;6:1178-82.
8. Sreekanth N, Rao B, Mukkanti K. RP-HPLC method development and validation of ropinirole hydrochloride in bulk and pharmaceutical dosage forms. Int J Pharm Pharm Sci 2009;1:186-92.
9. Fuster J, Negro S, Salama A, Fernandez Carballido A, Marcianes P, Boeva L, et al. HPLC-UV method development and validation for the quantification of ropinirole in new PLGA multiparticulate systems: microspheres and nanoparticles. Int J Pharm 2015;491:310-7.
10. Kakouris A, Samara V, Kalaskani A, Panderi I. Simultaneous determination of impurities in ropinirole tablets by an improved HPLC method coupled with diode array detection. Chromatographia 2014;77:447-57.
11. Hefnawy M, Al-Majed A, Mohammed M, Attia S, Rizk M, El-Eryan RT. Development of a monolithic HPLC-ECD method for the determination of ropinirole HCl in mouse sera and dosage forms. Br J Pharm Res 2016;13:1-11.
12. Bari SB, Bakhshi AR, Jain PS, Surana SJ. Development and validation of stability-indicating tlc-densitometric determination of ropinirole hydrochloride in bulk and pharmaceutical dosage form. Pharm Anal Acta 2011;2:1-7.
13. Mustafa G, Ahuja A, Baboota S, Ali J. Box-behnken supported validation of stability-indicating high performance thin-layer chromatography method: an application in degradation kinetic profiling of ropinirole. Saudi Pharm J 2013;21:93-102.
14. Bharathi DV, Jagadeesh B, Kumar SS, Lakshmi RN, Hotha KK, Naidu A, et al. Highly sensitive method for the determination of ropinirole with a lower limit of quantitation of 3.45 pg/ml in human plasma by LC-ESI-MS/MS: application to a clinical pharmacokinetic study. Biomed Chromatogr 2009;23:557-62.
15. Sindhusri M, Swetha T, Ramadevi A, Kumar AA. A novel rapid RP-HPLC method development and validation for the quantitative estimation of balofloxacin in tablets. Int J Pharm Pharm Sci 2014;7:319-22.
16. Sureshbabu K, Nageshwara Rao M, Rambabu C. Forced degradation studies and RP-HPLC method validation for the determination of ceritinib in bulk and its pharmaceutical dosage form. Asian J Pharm Clin Res 2015;8:44-51.
17. Guidance for Industry: Analytical procedures and methods validation for drugs and biologics. US Department of Health and Human Services. Food and Drug Administration. Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research; 2014.
18. International Conference on Harmonization (ICH), Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2(R1); 2005.
19. International Conference on Harmonization (ICH), Harmonised Tripartite Guideline. Stability Testing of New Drug Substances and Products Q1A(R2); 2003.
20. Blessy M, Patel RD, Prajapati PN, Agrawal YK. Development of forced degradation and stability indicating studies of drugs-a review. J Pharm Anal 2014;4:159-65.
21. Jayaprakash R, Natesan SK. Stability indicating RP-HPLC method development and validation for the simultaneous determination of vildagliptin and metformin in pharmaceutical dosage form. Int J Pharm Pharm Sci 2017;9:150-7.
22. Deshpande S, Farooqui M, Ganap G, Khadke V, Kayande DD. Development and validation of a gradient HPLC method for quantification of Edetate disodium in lyophilized injectable drug product. Int J Curr Pharm Res 2019;11:38-41.
23. United States Pharmacopeia 40-National Formulary 35:Physical Tests. Chapter 621-Chromatography, System Suitability. Chapter 1225-Validation of Compendial Procedures, USP; 2017.
24. Baje SI, Jyothi B, Madhavi N. RP-HPLC method for simultaneous estimation of ritonavir, ombitasvir and paritaprevir in tablet dosage forms and their stress degradation studies. Int J Appl Pharm 2019;11:193-210.
Statistics
69 Views | 55 Downloads
Citatons
How to Cite
R., S., G., R., & B. K., S. B. (2019). QUANTIFICATION OF ROPINIROLE HYDROCHLORIDE IN API AND TABLETS BY NOVEL STABILITY-INDICATING RP-HPLC METHOD: IT’S VALIDATION AND FORCED DEGRADATION STUDIES. International Journal of Applied Pharmaceutics, 11(5), 293-298. https://doi.org/10.22159/ijap.2019v11i5.33759
Section
Original Article(s)