• SANGEETHA G. Department of Pharmaceutics, Krupanidhi College of Pharmacy, Bangalore 560035, Karnataka, India
  • USHA N. Department of Pharmaceutics, Krupanidhi College of Pharmacy, Bangalore 560035, Karnataka, India
  • NANDHINI R. Department of Pharmaceutics, Krupanidhi College of Pharmacy, Bangalore 560035, Karnataka, India
  • KAVIYA P. Department of Pharmaceutics, Krupanidhi College of Pharmacy, Bangalore 560035, Karnataka, India
  • VIDHYA G. Department of Pharmaceutics, Krupanidhi College of Pharmacy, Bangalore 560035, Karnataka, India
  • CHAITHANYA B. Department of Pharmaceutics, Krupanidhi College of Pharmacy, Bangalore 560035, Karnataka, India


Nanotechnology is a broad and novel technology related to all branches of science. However, in the Pharmaceutical industry, it plays an immense role in the drug delivery system. Nanotechnology applied on metal-based drug delivery systems varies; the size ranges from 100 nm or less. Metallic nanoparticles are existing the world from the 4th century. The noble metals, like gold and silver have attracted many researchers in the class of anticancer and anti-microbial. Metallic nanoparticles are not only used in the biomedical applications also have major functions in the domain of textiles, agriculture, photography, etc. Various metals are found in various applications in the biomedical industries. At the same time, the metallic nanoparticles have been evidences of remarkable toxicity in various studies. The rationale behind this topic was that the properties, applications and toxicity of individual metal nanoparticles. As this study have not been compiled and reported. So, in the current review, the gap was filled. The main sources for the preparation of the manuscript are Pubmed, Elsevier and google scholars. Keywords used includes metallic nanoparticles, reported toxicity of metals in drug delivery, applications of metals in drug delivery, history of novel metals in drug delivery, etc. Approximately 400 reviews and academic papers were reviewed to compose the manuscript and sorted by reference to the need for a manuscript.

Keywords: Nanoparticles, Metalnanoparticles, Toxicity, Gold, History of nanoparticles


1. PN Sudha, K Sangeetha, K Vijayalakshmi, A Barhaum. Nanomaterials history, classification, unique properties, production and market. In: A Berhoum, Abdel Salam Hamdy Makhlouf. editors. Emerging applications of nanoparticles and architectural nanostructure. Amsterdam: Elsevier; 2018. p. 341-85.
2. OV Salata. Applications of metallic nanoparticles in biology and medicine. J Nanobiotechnol 2004;2:3.
3. Mody VV, Nounou MI, Bikram M. Novel nanomedicine-based MRI contrast agents for gynecological malignancies. Adv Drug Delivery Rev 2009;61:795-807.
4. Arunima Reghundhan, Nandakumar Kalarikkal, Sabu Thomus. Mechanical property analysis of nanomaterials. In: Sneha Mohan Bhagyaraj, Oluwatobi Samuel Oluwafemi, Nandakumar Kalarikkal, Sabu Thomas. editors. Characterization of nonmaterials advances and key technologies. Duxford: Elsevier; 2018. p. 191-212.
5. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005;19:311-30.
6. Ghaffari M, Dolatabadi JEN. Nanotechnology for pharmaceuticals. In: Thomas S, Grohens Y, Pottathara YB. editors. Industrial applications of nanomaterials, micro and nano technologies. Netherlands: Elsevier; 2018. p. 475–502.
7. Monisha Jaishankar, Tenzin Tseten, Naresh Anbalagen, Blessy B Methew, Krishnamurthy N Beeregowda. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 2014;7:60-72.
8. S Ram Prasad, K Elango, Devi Damayanthi, JS Saranya. Formulation and evaluation of azathioprine loaded silver nanopartilces for the treatment of rheumatoid arthritis. Asian J Biomed Pharm Sci 2013;3:28-32.
9. Harish Kumar K, Nagasamy Venkatesh, Himangshu Bhowmik, Anuttam Kuila. Metallic nanoparticle: a review. Biomed J Sci Tech Res 2018;4:3765-75.
10. KC Priyadarshni, Mahalingam PU. Antimicrobial and anticancer activity of silver nanoparticles from edible mushroom. Asian J Pharm Clin Res 2017;10:37-40.
11. DA Silva, Patricia B, Machado Rachel TA, Pironi Andressa Maria, Alves Renata Carolina, De Araujo Patricia Rocha, et al. Recent advances in the use of metallic nanoparticles with antitumoral action-review. Curr Medicinal Chem 2019;26:2108-46.
12. De jong WH, Borm Paul JA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 2008;3:133-49.
13. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 2003;107:668-77.
14. PK Jain, KS Lee, HI El-Sayed, MA El-Sayed. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phy Chem B 2006;110:7238-48.
15. V Myroshnychenko, J Rodriguez Fernandez, I Pastoriza Santos, AM Funston, C Novo, P Mulvaney, et al. Modelling the optical response of gold nanoparticles. Chem Soc Rev 2008;37:1798-805.
16. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Beilstein. J Nanotechnol 2018;9:1050-74.
17. Schaming D, Remita H. Nanotechnology: from ancient time to nowadays. Found Chem 2015;17:187–205.
18. Reiss G, Hutten A. Magnetic nanoparticles. In: Sattler Klaus D. Handbook of nanophysics: nanoparticles and quantum Dots. CRC Press: Suite Taylor and Francis; 2011. p. 1-12.
19. Faraday M. The bakerian lecture: experimental relations of gold (and other metals) to light phil. Trans R Soc Lond 1857;147:145-81.
20. Beilby GT. The effects of heat and of solvents on thin films of metal. Proc R Soc A 1903;72:226-35.
21. Turner T. Transparent of metallic films. Proc R Soc A 1908;81:301-9.
22. Turkevich J. Colloidal gold parts ii colour, coagulation, adhesion, alloying and catalytic properties. Gold Bull 1985;18:125-36.
23. Whitcomb, David, Mathew Carey Lea. Chemist, photographic scientist. In: Chemical Heritage Newsmagazine, Jg.11,Bd.3; 1987. p. 229-35.
24. Frens G, Overbeek JTG. Carey Lea's colloidal silver. Kolloid-Zeitschriftund Zeitschriftfur Polymere 1969;233:922-9.
25. Fonzl GL. Bitter legacy of Dr. Barnes. Greater Phil Msg 1962;16-21:53-60.
26. Weindling P. Epidemics and genocide in Eastern Europe. USA: Oxford University Press; 2000.
27. Apostolou P, Toloudi M, Chatziioannou M, Ioannou E, Knocke DR, J Nester, et al. Anvirzel™ in combination with cisplatin in breast, colon, lung, prostate, melanoma and pancreatic cancer cell lines. BMC Pharmacol Toxicol 2013;14:18.
28. Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol 2016;44:410-22.
29. Demling R, Desanti L. The role of silver technology in wound healing. Part 1: effects of silver on wound management. Wounds Compendium Clin Res Practice 2001;13:4–15.
30. TU Hoogenraad. History of zinc therapy. In: Rainsford KD, Milanino R, Sorenson JRJ, Velo GP. editors. Copper and zinc in inflammatory and degenerative diseases. Dordrecht/Boston/london: Kluwer Academic Publishers; 1998. p. 124.
31. Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol 2011;77:1541–7.
32. Dollwet HHA, Sorenson JRJ. Historic uses of copper compounds in medicine. Trace Elem Med 1985;2:80-7.
33. Elias CN, Lima JHC, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. JOM 2008;60:46-9.
34. Bag SS, Jana S, Kasula M. Sonogashira cross-coupling: alkyne-modified nucleosides and their applications. In: Anant RK, Debabrata M. editors. Palladium-catalyzed modification of nucleosides, nucleotides and oligonucleotides. Ansterdam: Elsevier; 2018. p. 75–146.
35. Mihranyan A, Ferraz N, Stromme M. Current status and future prospects of nanotechnology in cosmetics. Prog Mater Sci 2012;57:875-910.
36. Chanda N, Kattumuri V, Shukla R, Zambre A, Katti K, Upendran A, et al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc Natl Acad Sci USA 2010;107:8760-5.
37. Kubo R. Electronic properties of fine metallic particles. J Phys Soc Japan 1962;17:975–86.
38. Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasm on electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 1999;103:8410–26.
39. Yeh YC, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 2012;4:1871–80.
40. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, et al. Single-molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 1997;78:1667-70.
41. Zhang Y, Chu W, Foroushani AD, Wang H, Li D, Liu J, et al. New gold nanostructures for sensor applications. Materials (Basel) 2014;7:5169-201.
42. Zhou Y, Wang CY, Zhu YR, Chen ZY. A novel ultraviolet irradiation technique for shape controlled synthesis of gold nanoparticles at room temperature. Chem Mater 1999;11:2310-2.
43. Zhang Y, Qian J, Wang D, Wang Y, He S. Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy, Angew. Chemie Int Ed 2013;52:1148-51.
44. Narang J, Malhotra N, Singh G, Pundir CS. Electrochemical impediometric detection of anti-HIV drug-taking gold nanorods as a sensing interface. Biosens Bioelectron 2015;66:332–7.
45. Mackey MA, MR K Ali, Austin LA, Near RD, El-Sayed MA. The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J Phys Chem B 2014;118:1319-26.
46. Love AJ, Makarov VV, Sinitsyna V, Shaw J, Yaminsky IV, Kalinina NO, et al. A genetically modified tobacco mosaic virus that can produce gold nanoparticles from a metal salt precursor. Front Plant Sci 2015;6:984.
47. Lohse SE, Murphy CJ. The quest for shape control: a history of gold nanorod synthesis. Chem Mater 2013;25:1250-61.
48. Lin J, Wang S, Huang P, Wang Z, Chen S, Niu G, et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 2013;7:5320-9.
49. Yan PengJia, Bu YunMa, Xia WeiWei, Zhi YongQian. The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Lett 2017;28:691-702.
50. Martinez Paino IM, Marangoni VS, Silva de Oliveira RDC, Greggi Antunes LM, Zucolotto V. Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blodd mononuclear cells. Toxicol Lett 2012;215:119-25.
51. Huang YC, Yang YC, Yang KC, Shieh HR, Wang TY, Hwu Y, et al. Pegylated gold nanoparticles induce apoptosis in human chronic myeloid leukemia cells. BioMed Res Int 2014;182353:1-9.
52. Encarnacion Caballero Diaz, Miguel Valcarcel. Toxicity of gold nanoparticles. Compr Anal Chem 2014;66:207-54.
53. Zhao GJ, Stevens SE. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 1998;11:27-32.
54. Austin LA, Mackey MA, Dreaden EC, El-Sayed MA. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in bio diagnostics, therapy, and drug delivery. Arch Toxicol 2014;88:1391-417.
55. Ren J, Tilley RD. Preparation, self-assembly, and mechanistic study of highly monodispersed nanocubes. J Am Chem Soc 2014;129:3287-91.
56. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic application. Chem Rev 2011;111:3669-712.
57. Subha V, Ernest Ravindran RS, Sruthi P, Renganathan S. An eco-friendly approach for synthesis of silver nanoparticles using ipomoea pes-caprae root extract and their antimicrobial properties. Asian J Pharm Clin Res 2015;8:103-6.
58. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on escherichia coli and staphylococcus aureus. J Biomed Mater Res 2008;52:662-8.
59. Shi J, Wang L, Zhang J, Ma R, Gao J, Liu Y, et al. A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomaterials 2014;35:5847-61.
60. Zhang T, Wang L, Chen Q, Chen C. Cytotoxic potential of silver nanoparticles. Yonsei Med J 2014;55:283-91.
61. Panyala NR, Pena Mendez EM, Havel J. Silver or silver nanoparticles: a hazardous threat to the environment and human health. J Appl Biomed 2008;6:117-29.
62. Al Gurabi MA, Ali D, Alkahtani S, Alarifi S. In vivo DNA damaging and apoptotic potential of silver nanoparticles in swiss albino mice. Onco Targets Ther 2015;8:295-302.
63. Sheny DS, Philip D, Mathew J. Synthesis of platinum nanoparticles using dried Anacardium occidentale leaf and its catalytic and thermal applications. Spectrochim Acta Part A 2013;114:267-71.
64. Rai A, Singh A, Ahmad A, Sastry M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 2006;22:736-41.
65. Min Y, Li J, Liu F, Yeow EK, Xing B. NIR light-mediated photoactivation pt based antitumor prodrug and simultaneous cellular apoptosis imaging via upconversion nanoparticles. Angew Chem Int Ed Engl 2014;53:1012-6.
66. Pandey A, Kulkarni A, Roy B, Goldman A, Sarangi S, Sengupta P, et al. Sequential application of a cytotoxic nanoparticle and a PI3K inhibitor enhances antitumor efficacy. Cancer Res 2014;74:675-85.
67. Kostova I. Platinum complexes as anticancer agents. Recent Pat Anticancer Drug Discov 2006;1:1-22.
68. Alshatwi AA. Catechin hydrate suppresses MCF-7 proliferation through TP53/Caspase-mediated apoptosis. J Exp Clin Cancer Res 2011;29:167-76.
69. Cowley A, Woodward B. A healthy future: platinum in medical applications. Platin Met Rev 2011;55:98-107.
70. Yoshihisa Y, Zhao QL, Hassan MA, Wei ZL, Furuichi M, Miyamoto Y, et al. SOD/catalase mimetic platinum nanoparticles inhibit heat-induced apoptosis in human lymphoma U937 and HH cells. Free Radical Res 2011;45:326-35.
71. Hou J, Shang J, Jiao C, Jiang P, Xiao H, Luo L, et al. A core crosslinked polymeric micellar platium(IV) prodrug with enhanced anticancer efficiency. Macromol Biosci 2013;13:954-65.
72. Endo K, Ueno T, Kondo S, Wakisaka N, Murono S, Ito M, et al. Tumor-targeted chemotherapy with the nanopolymer-based drug NC-6004 for oral squamous cell carcinoma. Cancer Sci 2013;104:369-74.
73. Yang J, Sun X, Mao W, Sui M, Tang J, Shen Y. Conjugate of Pt (IV)I histone deacetylase inhibitor as a prodrug for cancer chemotherapy. Mol Pharm 2012;9:2793-800.
74. Manikandan M, Hasan N, Wu HF. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials 2013;34:5833-42.
75. Stephens IEL, Bondarenko AS, Grønbjerg U, Rossmeisl J, Chorkendorff I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ Sci 2012;5:6744-62.
76. Nellore J, Pauline C, Amarnath K. Bacopa monnieri phytochemicals mediated synthesis of platinum nanoparticles and its neurorescue effect on 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine-induced experimental parkinsonism in zebrafish. J Neurodegener Dis 2013. DOI:10.1155/ 2013/972391.
77. Periasamy VS, Alshatwi AA. Tea polyphenols modulate the antioxidant redox system on cisplatin-induced reactive oxygen species generation in a human breast cancer cell. Basic Clin Pharmacol Toxicol 2013;112:374-84.
78. Elder A, Yang H, Gwiazda R, Teng X, Thurston S, He H, et al. Testing nanomaterials of unknown toxicity: an example based on platinum nanoparticles of different shapes. Adv Materials 2007;19:3124.
79. Sorensen SN, Engelbrekt C, Lutzhoft HH, Jimenez Lamana J, Noori JS, Alatraktchi FA, et al. A Multimethod approach for investigating algal toxicity of platinum nanoparticles. Environ Sci Technol 2016;50:10635-43.
80. Konieczny P, Goralczyk AG, Szmyd R, Skalniak L, Koziel J, Filon FL, et al. Effects triggered by platinum nanoparticles on primary keratinocytes. Int J Nanomed 2013;8:3963-75.
81. Alluwaimi AM, Hussein Y. Diazinon immunotoxicity in mice: modulation of cytokines level and their gene expression. Toxicology 2007;236:123-31.
82. Ahmed AS, Yadav DR, Lee YS. Applications of nickel nanoparticles for control of fusarium wilt on lettuce and tomato. Int J Innov Res Sci Eng 2016;5:7378-85.
83. JI Phillips, FY Green, JCA Davies, Murray JilBA. Pulmonary and systemic toxicity following exposure to nickel nanoparticles. Am J Ind Med 2010;53:763-7.
84. Qiong Z, Jin SC, Xiao FL, Hao TB, Jian HJ. Palladium nanaparticles/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor. Biosens Bioelec 2011;26:3456-63.
85. Ye W, Yu J, Zhou Y, Gao D, Wang D, Wang C, et al. Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl Catal B 2016;181:371-8.
86. Khan M, Albalawi GH, Shaik MR, Khan M, Adil SF, Kuniyil M, et al. Miswak mediated green synthesized palladium nanoparticles as effective catalysts for the Suzuki coupling reactions in aqueous media. J Saudi Chem Soc 2017;21:450-7.
87. Nasrollahzadeh M, Sajadi SM. Green synthesis, characterization and catalytic activity of the Pd/TiO2 nanoparticles for the ligand-free suzuki-miyaura coupling reaction. J Colloid Interface Sci 2016;465:121-7.
88. Hildebrand H, Kuhnel D, Potthoff A, Mackenzie K, Springer A, Schirmer K. Evaluating the cytotoxicity of palladium/magnetite nano-catalysts intended for wastewater treatment. Environ Pollut 2010;158:65-73.
89. Wilkinson KE, Palmberg L, Witasp E, Kupczyk M, Feliu N, Gerde P, et al. Solution-engineered palladium nanoparticles: model for health effect studies of automotive particulate pollution. ACS Nano 2011;5:5312-24.
90. Ghosh S, Nitnavare R, Dewle A, Tomar GB, Chippalkatti R, More P, et al. Novel platinum-palladium bimetallic nanoparticles synthesized by dioscorea bulbifera: anticancer and antioxidant activities. Int J Nanomed 2015;10:7477-90.
91. Hosseini MJ, Jafarian I, Farahani S, Khodadadi R, Tagavi SH, Naserzadeh P, et al. New mechanistic approach of inorganic palladium toxicity: impairment in mitochondrial electron transfer. Metallomics 2016;8:252-9.
75 Views | 27 Downloads
How to Cite
G., S., N., U., R., N., P., K., G., V., & B., C. (2020). A REVIEW ON PROPERTIES, APPLICATIONS AND TOXICITIES OF METAL NANOPARTICLES. International Journal of Applied Pharmaceutics, 12(5), 58-63. https://doi.org/10.22159/ijap.2020v12i5.38747
Review Article(s)