NIOSOMES AS AN APPROACH TO IMPROVE THE SOLUBILITY AND BIOAVAILABILITY OF BCS CLASS II DRUGS

Authors

  • GAURANG SAWANT Department of Pharmaceutics, H. K. College of Pharmacy, Oshiwara, Mumbai, India https://orcid.org/0000-0001-8984-2148
  • GEETA BHAGWAT Department of Pharmaceutics, H. K. College of Pharmacy, Oshiwara, Mumbai, India

DOI:

https://doi.org/10.22159/ijap.2021v13i2.40423

Keywords:

Biopharmaceutics, Solubility, Permeability, Lipid carriers, Liposomes, Niosomes

Abstract

Based on their solubility and permeability, drugs are typically divided into four classes (Classes I–IV) according to the biopharmaceutics classification system (BCS). Of these classes, BCS class II drugs have high permeability and low solubility; not only do these characteristics constitute the rate-limiting step in the formulation of these drugs but the low solubility in water results in low bioavailability. Thus, methods for improving their solubility have been developed using lipid carriers such as liposomes, niosomes, and aquasomes; other approaches include self-micro-emulsifying drug delivery systems (SMEDDS) and self-nano-emulsifying drug delivery systems (SNEDDS). Currently, niosome-based drug delivery systems that utilize nonionic surfactants, drugs, and cholesterol in varying ratios are being widely used to deliver both hydrophilic and lipophilic drugs in addition to several other applications of niosomes.

Downloads

Download data is not yet available.

Author Biography

GEETA BHAGWAT, Department of Pharmaceutics, H. K. College of Pharmacy, Oshiwara, Mumbai, India

Associate Professor, Department Of Pharmaceutics

References

Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutics drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995;12:413-20.

Chi-Yuan W, Benet LZ. Predicting drug disposition via application of BCS: Transport/Absorption/Elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 2005;22:11-23.

Kerns EH, Di L. Multivariate pharmaceutical profiling for drug discovery. Curr Top Med Chem 2002;2:87-98.

Mujoriya RZ, Dhamande K, Bodla RB. Niosomal drug delivery system—a review. Int J Appl Pharm 2011;3:7-10.

Rogerson A, Cummings J, Willmott N, Florence AT. The distribution of doxorubicin in mice following administration in niosomes. J Pharm Pharmacol 1988;40:337-42.

Baillie AJ, Coombs GH, Dolan TF. Non-ionic surfactant vesicles, niosomes, as delivery system for the anti-leishmanial drug, sodium stibogluconate. J Pharm Pharmacol 1986;38:502-5.

Khandare JN, Madhavi G, Tamhankar BM. Niosomes novel drug delivery system. Eastern Pharm 1994;37:61-4.

Raja Naresh RA, Chandrashekhar G, Pillai GK, Udupa N. Anti-inflammatory activity of niosome encapsulated diclofenac sodium with tween-85 in arthritic rats. Ind J Pharmacol 1994;26:46-8.

Chauhan S, Luorence MJ. The preparation of polyoxyethylene containing non-ionic surfactant vesicles. J Pharm Pharmacol 1989;41:6p.

Blazek Walsh AI, Rhodes DG. SEM imaging predicts the quality of niosomes from maltodextrin-based proniosomes. Pharm Res 2001;18:656-61.

Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutics drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995;12:413–20.

Guidance for industry, “Waiver of in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms based on a biopharmaceutics classification system,” CDER/FDA; 2000.

Biopharmaceutics classification system guidance office of pharmaceutical science, CDER/FDA; 2006.

Ku MS. Use of the biopharmaceutical classification system in early drug development. AAPS J 2008;10:208-12.

CA Lipiniski, F Lombardo, BW Dominy, PJ Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 1997;23:3–25.

C Bevan, RS Lloyd. A high-throughput screening method for the determination of aqueous drug solubility using laser nephelometry in microtiter plates. Anal Chem 2000;72:1781–7.

Avdeef. High throughput measurements of solubility profiles. In: B Testa, H van de Waterbeemd, G Folkers, R Guy. eds. Pharmacokinetic optimization in drug research: biological, physiological, and computational strategies, verlag helvetica chimica acta, zurich; 2001. p. 305–26.

P Artursson, K Palm, K Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Delivery Rev 1996;22:67–84.

PV Balimane, Y Han, S Chong. Current industrial practices of assessing permeability and p-glycoprotein interaction. AAPS J 2006;8:E1-13.

JT Doluisio, NF Billups, LW Dittert, ET Sugita, JV Swintosky. Drug absorption. I. An in situ rat gut technique yielding realistic absorption rates. J Pharm Sci 1969;58:1196–200.

JD Irvine, L Takahashi, K Lockhart, J Cheong, JW Tolan, HE Selick, et al. MDCK (Madin–darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci 1999;88:28–33.

Handjani Vila RM, Ribier A, Rondot B, Vanlerberghie G. Dispersions of lamellar phases of non-ionic lipids in cosmetic products. Int J Cosmet Sci 1979;1:303.

Saraswathi TS, Mothilal M, Jaganathan MK. Niosomes as an emerging formulation tool for drug delivery-a review. Int J Appl Pharm 2019;11:7-15.

Diljyot K. Niosomes: a new approach to targeted drug delivery. Int J Pharm Phytopharmacol Res 2012;2:53-9.

Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, et al. Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res 2010;1:374.

Yeo PL, Lim CL, Chye SM, Ling AP, Koh RY. Niosomes: a review of their structure, properties, methods of preparation, and medical applications. Asian Biomed 2018;11:301-14.

Jayaraman SC, Ramachandran C, Weiner N. Topical delivery of erythromycin from various formulations: an in vivo hairless mouse study. J Pharm Sci 1996;85:1082-4.

Blazek Welsh AI, Rhodes DG. SEM imaging predicts the quality of niosomes from maltodextrin-based proniosomes. Pharm Res 2001;18:656-61.

Fernandes AV, Pydi CR, Verma R, Jose J, Kumar L. Design, preparation and in vitro characterizations of fluconazole loaded nanostructured lipid carriers. Braz J Pharm Sci 2020;56:1-14.

Seth AK, Misra A, Umrigar D. Topical liposomal gel of idoxuridine for the treatment of herpes simplex: pharmaceutical and clinical implications. Pharm Dev Technol 2005;9:277-89.

Kumar A, Agarwal SP, Ahuja A, Ali J, Choudhry R, Baboot S. Preparation, characterization, and in vitro antimicrobial assessment of nanocarrier based formulation of nadifloxacin for acne treatment. Pharmazie 2011;66:111-4.

Yoshioka T, Sternberg B, Florence AT. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). Int J Pharm 1994;105:1-6.

Tavano L, Aiello R, Ioele G, Picci N, Muzzalupo R. Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy: preparation, characterization and biological properties. Colloids Surf B 2014;118:7-13.

Priprem A, Janpim K, Nualkaew S, Mahakunakorn P. Topical niosome gel of Zingiber cassumunar Roxb extract for anti-inflammatory activity enhanced skin permeation and stability of compound D. AAPS PharmSciTech 2016;17:631-9.

W Hua, T Liu. Preparation and properties of highly stable innocuous niosome in span 80/PEG 400/H2O system. Colloids Surf A 2007;302:377–82.

Manosroi A, Ruksiriwanich W, Abe M, Sakai H, Manosroi W, Manosroi J. Biological activities of the rice bran extract and physical characteristics of its entrapment in niosomes by supercritical carbon dioxide fluid. J Supercrit Fluids 2010;54:137-44.

Manosroi A, Chutoprapat R, Abe M, Manosroi J. Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid. Int J Pharm 2008;352:248-55.

Azmin MN, Florence AT, Handjani Vila RM, Stuart JF, Vanlerberghe G, Whittaker JS. The effect of non‐ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmacol 1985;37:237-42.

Hunter CA, Dolan TF, Coombs GH, Baillie AJ. Vesicular systems (niosomes and liposomes) for delivery of sodium stibogluconate in experimental murine visceral leishmaniasis. J Pharm Pharmacol 1988;40:161-5.

Gandhi A, Sen SO, Paul A. Current trends in niosome as vesicular drug delivery system. Asian J Pharm Life Sci 2012;2:2231:4423.

Cummings J, Stuart JF, Calman KC. Determination of Adriamycin, adriamycinol and their 7-deoxy aglycones in human serum by high-performance liquid chromatography. J Chromatogr B 1984;311:125-33.

Udupa N, Chandraprakash KS, Umadevi P, Pillai GK. Formulation and evaluation of methotrexate niosomes. Drug Dev Ind Pharm 1993;19:1331-42.

Paolino D, Cosco D, Muzzalupo R, Trapasso E, Picci N, Fresta M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int J Pharm 2008;353:233-42.

Parthasarathi G, Udupa N, Umadevi PI, Pillai G. Niosome encapsulated of vincristine sulfate: improved anticancer activity with reduced toxicity in mice. J Drug Target 1994;2:173-82.

Nesaretnam K, Guthrie N, Chambers AF, Carroll KK. Effect of tocotrienols on the growth of a human breast cancer cell line in culture. Lipids 1995;30:1139-43.

Fu JY, Tan DM, Er HM, Chen YS, Nesaretnam K. Tumor-targeted niosome as novel carrier for intravenous administration of tocotrienol. Asian J Pharm Sci 2016;11:79-80.

Vallianou NG, Evangelopoulos A, Schizas N, Kazazis C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res 2015;35:645-51.

Xu YQ, Chen WR, Tsosie JK, Xie X, Li P, Wan JB. Niosome encapsulation of curcumin: characterization and cytotoxic effect on ovarian cancer cells. J Nanomater 2016. https://doi.org/10.1155/2016/6365295

Sharma V, Anandhakumar S, Sasidharan M. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: an efficient carrier for cancer multi-drug delivery. Mater Sci Engi C 2015;56:393-400.

Antimalaria coordinating research group. Antimalaria studies on qinghaosu. Chin Med J 1979;92:811–6.

Crespo Ortiz MP, Wei MQ. Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol 2012. DOI:10.1155/2012/247597

Li Q, Weina PJ, Milhous WK. Pharmacokinetic and pharmacodynamic profiles of rapid-acting artemisinins in the antimalarial therapy. Curr Drug Ther 2007;2:210-23.

Dwivedi A, Mazumder A, Du Plessis L, Du Preez JL, Haynes RK, Du Plessis J. In vitro anti-cancer effects of artemisone nano-vesicular formulations on melanoma cells. Nanomedicine 2015;11:2041-50.

Cole MP, Jones CT, Todd ID. A new anti-oestrogenic agent in late breast cancer: an early clinical appraisal of ICI46474. Br J Cancer 1971;25:270.

Shaker DS, Shaker MA, Hanafy MS. Cellular uptake, cytotoxicity and in vivo evaluation of Tamoxifen citrate loaded niosomes. Int J Pharm 2015;493:285-94.

Tila D, Yazdani Arazi SN, Ghanbarzadeh S, Aroma S, Pourmoazzen Z. pH-sensitive, polymer-modified, plasma stable niosomes: promising carriers for anti-cancer drugs. EXCLI J 2015;14:21.

Li M, Tang Z, Zhang Y, Lv S, Li Q, Chen X. Targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis. Acta Biomater 2015;18:132-43.

Kanaani L. Effects of cisplatin-loaded niosomal nanoparticles on BT-20 human breast carcinoma cells. Asian Pac J Cancer Prev 2017;18:365.

Aggarwal D, Kaur IP. Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm 2005;290:155-9.

Gregoriadis G. Targeting of drugs: implications in medicine. Lancet 1981;318:241-7.

Dufes C, Gaillard F, Uchegbu IF, Schätzlein AG, Olivier JC, Muller JM. Glucose-targeted niosomes deliver vasoactive intestinal peptide (VIP) to the brain. Int J Pharm 2004;285:77-85.

Moser P, Marchand AM, Labrude P, Handjani VRM, Vignerson C. Niosomes d'hémoglobine preparation, proprietes physicochimiques et oxyphoriques, stabilite. Pharma Acta Helv 1989;64:192-202.

Ruckmani K, Sankar V. Formulation and optimization of zidovudine niosomes. AAPS PharmSciTech 2010;11:1119-27.

Ruckmani K, Sankar V, Sivakumar M. Tissue distribution, pharmacokinetics and stability studies of zidovudine delivered by niosomes and proniosomes. J Biomed Nanotechnol 2010;6:43-51.

Carafa M, Santucci E, Lucania G. Lidocaine-loaded non-ionic surfactant vesicles: characterization and in vitro permeation studies. Int J Pharm 2002;231:21-32.

Rastogi V, Pragya PU. A brief view on antihypertensive drugs delivery through transdermal patches. Int J Pharm Sci Res 2012;3:1955.

Makeshwar KB, Wasankar SR. Niosome: a novel drug delivery system. Asian J Pharm Res 2013;3:16-20.

Obrenovic MM, Perrie Y, Gregoriadis G. Entrapment of plasmid DNA into niosomes: characterization studies. J Pharm Pharmacol 1998;50:155.

Brewer J, Alexander J. The adjuvant activity of non-ionic surfactant vesicles (niosomes) on the BALB/c humoral response to bovine serum albumin. Immunology 1992;75:570-5.

Hassan Y, Brewer J, Alexander J, Jennings R. Immune responses in mice induced by HSV-1 glycoproteins presented with ISCOMs or NISV delivery systems. Vaccine 1996;14:1581-9.

Mohamedi S, Brewer J, Alexander J, Heath A, Jennings R. Antibody responses, cytokine levels and protection of mice immunized with HSV-2 antigens formulated into NISV or ISCOM delivery systems. Vaccine 2000;18:2083-94.

Yoshioka T, Skalko N, Gursel M, Gregoriadis G, Florence A. A non-ionic surfactant vesicle in-water-in-oil (v/w/o) system: potential uses in drug and vaccine delivery. J Drug Target 1995;2:533-9.

Murdan S, Gregoriadis G, Florence A. Sorbitan monostearate/ polysorbate 20 organogels containing niosomes: a delivery vehicle for antigens. Eur J Pharm Sci 1999;8:177-86.

Chambers MA, Wright DC, Brisker J, Williams A, Hatch G, Gavier Widen D, et al. A single dose of killed mycobacterium bovis BCG in a novel class of adjuvant (Novasome™) protects guinea pigs from lethal tuberculosis. Vaccine 2004;22:1063-71.

Vangala A, Kirby D, Rosenkrands I, Agger EM, Andersen P, Perrie Y. A comparative study of cationic liposome and niosome-based adjuvant systems for protein subunit vaccines: characterization, environmental scanning electron microscopy and immunization studies in mice. J Pharm Pharmacol 2006:58:787-99.

Vangala A, Bramwell VW, McNeil S, Christensen D, Agger EM, Perrie Y. Comparison of vesicle based antigen delivery systems for delivery of hepatitis B surface antigen. J Controlled Release 2007;119:102-10.

Ferro V, Stimson W. Investigation into suitable carrier molecules for use in an antigonadotrophin releasing hormone vaccine. Vaccine 1998;16:1095-102.

Ferro VA, Costa R, Carter KC, Harvey MJ, Waterston MM, Mullen AB, et al. Immune responses to a GnRH-based anti-fertility immunogen, induced by different adjuvants and subsequent effect on vaccine efficacy. Vaccine 2004;22:1024-31.

Lezama Dávila CM. Vaccination of C57BL/10 mice against cutaneous leishmaniasis. Use of purified gp63 encapsulated into niosomes surfactants vesicles: a novel approach. Mem Inst Oswaldo Cruz 1999;94:67-70.

Rentel C, Bouwstra J, Naisbett B, Junginger H. Niosomes as a novel peroral vaccine delivery system. Int J Pharm 1999;186:161-7.

Chattaraj S, Das S. Physicochemical characterization of influenza viral vaccine loaded surfactant vesicles. Drug Delivery 2003;10:73-7.

Jain S, Vyas S. Mannosylated niosomes as an adjuvant-carrier system for oral mucosal immunization. J Liposome Res 2006;16:331-45.

Gupta P, Mishra V, Rawat A, Dubey P, Mahor S, Jain S, et al. Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int J Pharm 2005;293:73-82.

Adhikari AN, Mahar KS. DNA targeted anthraquinone derivatives: an important anticancer agents. Int J Pharm Pharm Sci 2016;8:17-25.

Hudu SA, Shinkafi SH, Shuaibu U. An overview of recombinant vaccine technology, adjuvants and vaccine delivery methods. Int J Pharm Pharm Sci 2016;8:19-24.

Gade K, Thanushree N. The dengue vaccines: assessment of future prospects, treatment, and vaccine challenges. Asian J Pharm Clin Res 2020;13:4-9.

Mahor S, Gupta PN, Rawat A, Vyas SP. A needle-free approach for topical immunization: antigen delivery via vesicular carrier system. Curr Med Chem 2007;14:2898-910.

Perrie Y, Barralet J, McNeil S, Vangala A. Surfactant vesicle-mediated delivery of DNA vaccines via the subcutaneous route. Int J Pharm 2004;284:31-41.

Vyas S, Singh R, Jain S, Mishra V, Mahor S, Singh P, et al. Non-ionic surfactant-based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int J Pharm 2005;296:80-6.

Published

07-03-2021

How to Cite

SAWANT, G., & BHAGWAT, G. (2021). NIOSOMES AS AN APPROACH TO IMPROVE THE SOLUBILITY AND BIOAVAILABILITY OF BCS CLASS II DRUGS. International Journal of Applied Pharmaceutics, 13(2), 94–101. https://doi.org/10.22159/ijap.2021v13i2.40423

Issue

Section

Review Article(s)