TREATMENT MODALITIES OF THE COVID-19 PANDEMIC THROUGH REPURPOSED DRUGS AND STATUS OF VACCINES

  • MD SADIQUE HUSSSAIN School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
  • MOHIT School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
  • PARUL PAMMA School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
  • BABY KUMARI School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India

Abstract

Respiratory diseases are the leading source of morbidity and death for millions around the world of all ages. A 2019 coronavirus outbreak has occurred in China and is spread quickly throughout nearly all across the world. To introduce prevention measures that have contributed to a sudden upturn in the rate of cases around the globe, several nations responded too late. It has prompted nations to close the borders, halted companies, kept people inside their homes, and numerous other measures to prevent their spread.


We systematically searched on Google scholar, PubMed, LitCovid, and MedRxiv using the search terms coronavirus, severe acute respiratory syndrome, 2019-nCoV, SARS-CoV-2, SARS-CoV, MERS-CoV, COVID-19, and vaccine for published articles. Present or performed clinical studies were found on the ClinicalTrials. gov, the Chinese Clinical Trial Registry, and the International Clinical Trial Registry site using the disease searches phrase coronavirus infection.


Many repurposed drugs, including antivirals, antibiotics, monoclonal antibodies, corticosteroids, and others, were found to be effective against the novel COVID-19. Governments, private firms, researchers, and non-profit organizations are working hard to create a COVID-19 vaccine.


In addition to the new medicines and old drug clinical testing, SARS-CoV-2 vaccines must also be designed and developed. Moreover, positive news in the development of vaccines suggests that new vaccines will be available on the market soon and a bowl of immunity against this virus can be established, thus limiting the spread and eradication of this deadly virus from the surface of the world as with so many viruses.

Keywords: SARS-CoV-2, COVID-19, Repurposed drugs, Vaccines, Clinical trials

References

1. Zar HJ, Ferkol TW. The global burden of respiratory disease-impact on child health. Pediatr Pulmonol 2014;49:430–4.
2. Bousquet J, Dahl R, Khaltaev N. Global alliance against chronic respiratory diseases. Eur Respir J 2007;29:233–9.
3. Labaki WW, Han MK. Chronic respiratory diseases: a global view. Lancet 2020;8:531-3.
4. Ait-Khaled N, Enarson D, Bousquet J. Chronic respiratory diseases in developing countries: the burden and strategies for prevention and management. Bull World Health Organ 2001;79:971-9.
5. Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 2020;87:281-6.
6. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727-33.
7. Munster VJ, Koopmans M, Doremalen NV, Riel DV, Wit ED. A novel coronavirus emerging in China key questions for impact assessment. N Engl J Med 2020;382:692-4.
8. Su L, Ma X, Yu H, Zhang Z, Bian P, Han Y, et al. The different clinical characteristics of coronavirus disease cases between children and their families in China–the character of children with COVID-19. Emerg Microbes Infect 2020;9:707-13.
9. Malik YA. Properties of Coronavirus and SARS-CoV-2. Malaysian J Pathol 2020;42:3-11.
10. Upadhyay J, Tiwari N, Ansari MN. Role of inflammatory markers in coronavirus disease (COVID-19) patients: a review. Exp Biol Med 2020;245:1368–75.
11. Zhou M, Zhang X, Qu J. Coronavirus disease 2019 (COVID-19): a clinical update. Front Med 2020;14:126–35.
12. Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health 2020;25:278-80.
13. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395:565–74.
14. Shoenfeld Y. Corona (COVID-19) time musings: our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmun Rev 2020;19:102538.
15. Mazumder H, Hossain MM, Das A. Geriatric care during public health emergencies: lessons learned from novel corona virus disease (COVID-19) pandemic. J Gerontol Soc Work 2020;63:257-8.
16. Lipsitch M, Swerdlow DL, Finelli L. Defining the epidemiology of covid-19-studies needed. N Engl J Med 2020;382:1194-6.
17. Biswas K, Sen P. Space-time dependence of corona virus (COVID-19) outbreak. arXiv; 2020.
18. Agarwal KM, Mohapatra S, Sharma P, Sharma S, Bhatia D, Mishra A. Study and overview of the novel corona virus disease (COVID-19). Sensors Int 2020;1:100037.
19. Zu ZY, Jiang MD, Xu PP, Chen C, Ni QQ, Lu GM, et al. Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology 2020;296:E15–E25.
20. Sajed AN, Amgain K. Corona virus disease (COVID-19) outbreak and the strategy for prevention. Eurasian J Med Sci 2020;2:1-3.
21. Kumari R, Kaur J, Hussain S. Management of diabetes with COVID-19: a review. Int J Pharm Pharm Sci 2020;12:1-6.
22. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016;24:490-502.
23. Singh S, Kaur N, Kaur M. A review on corona virus. J Endocrinol Metab Res 2020;1:1-11.
24. Zaki AM, Boheemen SV, Bestebroer TM, Osterhaus ADME, DVM Ron AM, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012;367:1814-20.
25. Zhou P, Fan H, Lan T, Yang XL, Shi WF, Zhang W, et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 2018;556:255-8.
26. Song F, Shi N, Shan F, Zhang Z, Shen J, Lu H. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 2020;295:210–7.
27. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the Challenges. Int J Antimicrob Agents 2020;55:105924.
28. Harb AM, Harb SM. Corona COVID-19 spread-a nonlinear modeling and simulation. Comput Electr Eng 2020;88:106884.
29. Chhikara BS, Rathi B, Singh J, Poonam. Corona virus SARS-CoV-2 disease COVID-19:Infection, prevention and clinical advances of the prospective chemical drug therapeutics. Chem Biol Lett 2020;7:63?72.
30. Das SK. The pathophysiology, diagnosis and treatment of corona virus disease 2019 (COVID-19). Ind J Clin Biochem 2020;35:385-96.
31. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 2020;395:1973–87.
32. Gandhi RT, Lynch JB, MPH, Rio CD. Mild or moderate covid-19. N Engl J Med 2020;383:1757-66.
33. Zheng F, Tang W, Li H, Huang YX, Xie YL, Zhou ZG. Clinical characteristics of 161 cases of corona virus disease 2019 (COVID-19) in Changsha. Eur Rev Med Pharmacol Sci 2020;24:3404-10.
34. Jajodia A, Ebner L, Heidinger B, Chaturvedi A, Prosch H. Imaging in corona virus disease 2019 (COVID-19)-a scoping review. Eur J Radiol 2020;7:100237.
35. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med 2020;35:1545-9.
36. Awasthi A, Vishwas S, Corrie L, Kumar R, Khursheed R, Kaur J, et al. OUTBREAK of novel corona virus disease (COVID-19): antecedence and aftermath. Eur J Pharmacol 2020;884:173381.
37. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19) a review. JAMA 2020;324:782-93.
38. Mao R, Qiu Y, He JS, Tan JY, Li XH, Liang J, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2020;5:667–78.
39. Berlin DA, Gulick RM, Martinez FJ. Severe covid-19. N Engl J Med 2020;383:2451-60.
40. Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19); 2020.
41. Gilead’s Investigational Antiviral Remdesivir Receives U. S. Food and Drug Administration Emergency Use Authorization for the Treatment of COVID-19. Available from: https://www.gilead.com/news-and-press/press-room/press-releases/2020/5/gileads-investigational-antiviral-remdesivir-receives-us-food-and-drug-administration-emergency-use-authorization-for-the-treatment-of-covid19. [Last accessed on 15 Dec 2020]
42. Adedeji AO, Severson W, Jonsson C, Singh K, Weiss SR, Sarafianos SG. Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. J Virol 2013;87:8017-28.
43. Kumar V, Jung YS, Liang PH. Anti-SARS coronavirus agents: a patent review (2008–present). Expert Opin Ther Pat 2013;23:1337-48.
44. Neupane K, Ahmed Z, Pervez H, Ashraf R, Majeed A. Potential treatment options for COVID-19: a comprehensive review of global pharmacological development efforts. Cureus 2020;12:e8845.
45. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: a systematic review. J Med Virol 2020;92:479-90.
46. Laskar P, Yallapu MM, Chauhan SC. Tomorrow never dies: recent advances in diagnosis, treatment, and prevention modalities against coronavirus (COVID-19) amid controversies. Diseases 2020;8:30.
47. Li CC, Wang XJ, Wang HCR. Repurposing host-based therapeutics to control coronavirus and influenza virus. Drug Discovery Today 2019;24:726-36.
48. Cheng MP, Lee TC, Tan DH, Murthy S. Generating randomized trial evidence to optimize treatment in the COVID-19 pandemic. Can Med Assoc J 2020;192:E405-E407.
49. Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016;531:381-5.
50. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio 2018;9. DOI:10.1128/mBio.00221-18.
51. Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017;9:3653.
52. Martinez MA. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother 2020;64. DOI:10.1128/AAC.00399-20
53. Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: the reality and challenges. J Microbiol Immunol Infect 2020;53:436-43.
54. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe covid-19. N Engl J Med 2020;382:2327-36.
55. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of covid-19-preliminary report. N Engl J Med 2020;383:1813-26.
56. Administration D. Fact sheet for health care providers emergency use authorization (EUA) of remdesivir (GS-5734TM). Available from: http://www.clinicaltrials.gov. [Last accessed on 15 Dec 2020]
57. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020;395:P1569-78.
58. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382:929-36.
59. Cvetkovic RS, Goa KL. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs 2003;63:769–802.
60. De Wilde AH, Jochmans D, Posthuma CC, Zevenhoven Dobbe JC, Van Nieuwkoop S, Bestebroer TM, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of middle east respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother 2014;58:4875-84.
61. Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004;59:252-6.
62. Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res 2020;7:4.
63. Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ, et al. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J Korean Med Sci 2020;35:e79.
64. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe covid-19. N Engl J Med 2020;382:1787-99.
65. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad-spectrum inhibitor of viral RNA polymerase. Proc Japan Acad Ser B 2017;93:449-63.
66. Yamamura H, Matsuura H, Nakagawa J, Fukuoka H, Domi H, Chujoh S. Effect of favipiravir and an anti-inflammatory strategy for COVID-19. Crit Care 2020;24:1-3.
67. Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering 2020;6:1192-8.
68. Seneviratne SL, Abeysuriya V, De Mel S, De Zoysa I, Niloofa R. Favipiravir in COVID-19. Int J Progressive Sci Technologies 2020;19:143-5.
69. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA 2020;323:1824-36.
70. Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med 2006;3:e343.
71. Hung IFN, Lung KC, Tso EYK, Liu R, Chung TWH, Chu MY, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 2020;395:1695-704.
72. Chan JFW, Yao Y, Yeung ML, Deng W, Bao L, Jia L, et al. Treatment with lopinavir/ritonavir or interferon-?1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis 2015;212:1904-13.
73. Qayyumi B, Singh A, Tuljapurkar V, Chaturvedi P. Management of COVID-19: a brief overview of the various treatment strategies. Cancer Res Stat Treat 2020;3:233.
74. Xu K, Chen Y, Yuan J, Yi P, Ding C, Wu W, et al. Clinical efficacy of arbidol in patients with 2019 novel coronavirus-infected pneumonia: a retrospective cohort study. J Infect Public Health 2020;13:1187-95.
75. Zhu Z, Lu Z, Xu T, Chen C, Yang G, Zha T, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect 2020;81:e21-e23.
76. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708-20.
77. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.
78. Yamamoto N, Yang R, Yoshinaka Y, Amari S, Nakano T, Cinatl J, et al. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem Biophys Res Commun 2004;318:719-25.
79. Ohashi H, Watashi K, Saso W, Shionoya K, Iwanami S, Hirokawa T, et al. Multidrug treatment with nelfinavir and cepharanthine against COVID-19. bioRxiv; 2020.
80. Fantini J, Di Scala C, Chahinian H, Yahi N. Structural and molecular modeling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents 2020;105960.
81. Patel TK, Barvaliya M, Kevadiya BD, Patel PB, Bhalla HL. Does adding of hydroxychloroquine to the standard care provide any benefit in reducing the mortality among COVID-19 patients?: a systematic review. J Neuroimmune Pharmacol 2020;15:350-8.
82. Wright C, Ross C, Mc Goldrick N. Are hydroxychloroquine and chloroquine effective in the treatment of SARS-COV-2 (COVID-19)? Evid Based Dent 2020;21:64-5.
83. Galvis V, Spinelli FR, Tello A, Sossa CL, Higuera JD, Gomez ED, et al. Hydroxychloroquine as prophylaxis for coronavirus SARS-CoV-2 infection: review of the ongoing clinical trials. Arch Bronconeumol 2020;56:606.
84. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020;71:732-9.
85. Weston S, Coleman CM, Sisk JM, Haupt R, Logue J, Matthews K, et al. Broad anti-coronaviral activity of FDA approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo. bioRxiv 2020. https://doi.org/10.1101/2020.03.25.008482
86. Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020;14:72-3.
87. Vianney T, Nguyet NM, Toi PV, Lee SJ, Farrar J, Wills B, et al. A randomized controlled trial of chloroquine for the treatment of dengue in vietnamese adults. PLoS Negl Trop Dis 2010;4:e785.
88. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci 2020;117:10970-5.
89. Gautret P, Lagier JC, Parola P, Meddeb L, Sevestre J, Mailhe M, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: a pilot observational study. Travel Med Infect Dis 2020;34:101663.
90. Skipper CP, Pastick KA, Engen NW, Bangdiwala AS, Abassi M, Lofgren SM, et al. Hydroxychloroquine in nonhospitalized adults with early COVID-19: a randomized trial. Ann Intern Med 2020;173:623-31.
91. Sarkar C, Mondal M, Islam MT, Martorell M, Docea AO, Maroyi A, et al. Potential therapeutic options for COVID-19: current status, challenges, and future perspectives. Front Pharmacol 2020;11:1428.
92. Trialsitenews. The Carrimycin Clinical Trial in China: An Obscure Drug Targeting Upper Respiratory Infection. Available from: https://www.trialsitenews.com/the-carrimycin-clinicaltrial-in-china-an-obscure-drug-targeting-upperrespiratory-infection/ [Last accessed on 15 Dec 2020]
93. Clinicaltrials. Gov (2020k). Available from: https://clinicaltrials.gov/ct2/show/NCT04286503 [Last accessed on 13 Dec 2020]
94. Min JY, Jang YJ. Macrolide therapy in respiratory viral infections. Mediators Inflamm 2012. DOI:10.1155/2012/649570
95. Bacharier LB, Guilbert TW, Mauger DT, Boehmer S, Beigelman A, Fitzpatrick AM, et al. Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses: a randomized clinical trial. JAMA 2015;314:2034-44.
96. Gautret P, Lagier JC, Parola P, Meddeb L, Mailhe M, Doudier B, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020;56:105949.
97. Ohe M, Shida H, Jodo S, Kusunoki Y, Seki M, Furuya K, et al. Macrolide treatment for COVID-19: will this be the way forward? Biosci Trends 2020;14:159-60.
98. Mehlhorn H. Encyclopedia of parasitology. 3rd ed. Berlin: Springer; 2008.
99. Vercruysse J, Rew RS. Macrocyclic lactones in antiparasitic therapy. Oxon, UK: CABI Publisher; 2002.
100. Elizondo Gonzalez R, Cruz Suarez LE, Ricque Marie D, Mendoza Gamboa E, Rodriguez Padilla C, Trejo Avila LM. In vitro characterization of the antiviral activity of fucoidan from cladosiphon okamuranus against newcastle disease virus. Virol J 2012;9:307.
101. Mastrangelo E, Pezzullo M, De Burghgraeve T, Kaptein S, Pastorino B, Dallmeier K, et al. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J Antimicrob Chemother 2012;67:1884-94.
102. Götz V, Magar L, Dornfeld D, Giese S, Pohlmann A, Hoper D, et al. Influenza a viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Sci Rep 2016;6:1-15.
103. Lundberg L, Pinkham C, Baer A, Amaya M, Narayanan A, Wagstaff KM, et al. Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce venezuelan equine encephalitis virus replication. Antiviral Res 2013;100:662-72.
104. Choudhary R, Sharma AK. Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance. New Microbes New Infect 2020;35:100684.
105. Alam MT, Murshed R, Bhiuyan E, Saber S, Alam RF, Robin RC. A case series of 100 COVID-19 positive patients treated with combination of ivermectin and doxycycline. J Bangladesh College Physicians Surgeons 2020;10-15. DOI:10.3329/jbcps.v38i0.47512
106. Gorial FI, Mashhadani S, Sayaly HM, Dakhil BD, AlMashhadani MM, Aljabory AM, et al. Effectiveness of ivermectin as add-on therapy in COVID-19 management (pilot trial). medRxiv 2020. https://doi.org/10.1101/2020.07.07.20145979
107. Hashim HA, Maulood MF, Rasheed AM, Fatak DF, Kabah KK, Abdulamir AS. Controlled randomized clinical trial on using Ivermectin with doxycycline for treating COVID-19 patients in Baghdad, Iraq. medRxiv 2020. https://doi.org/10.1101/2020.10.26.20219345
108. Totura AL, Bavari S. Broad-spectrum coronavirus antiviral drug discovery. Exp Opin Drug Discovery 2019;14:397-412.
109. Chibber P, Haq SA, Ahmed I, Andrabi NI, Singh G. Advances in the possible treatment of COVID-19: a review. Eur J Pharmacol 2020;883:173372.
110. Hensley LE, Fritz EA, Jahrling PB, Karp C, Huggins JW, Geisbert TW. Interferon-? 1a and SARS coronavirus replication. Emerg Infect Dis 2004;10:317.
111. Felgenhauer U, Schoen A, Gad HH, Hartmann R, Schaubmar AR, Failing K, et al. Inhibition of SARS–CoV-2 by type I and type III interferons. J Biol Chem 2020;295:13958-64.
112. Hart BJ, Dyall J, Postnikova E, Zhou H, Kindrachuk J, Johnson RF, et al. Interferon-? and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. J Gen Virol 2014;95:571.
113. Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 2007;20:660-94.
114. Morgenstern B, Michaelis M, Baer PC, Doerr HW, Cinatl Jr J. Ribavirin and interferon-? synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochem Biophys Res Commun 2005;326:905-8.
115. Sainz Jr B, Mossel EC, Peters CJ, Garry RF. Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virol 2004:329:11-7.
116. Scagnolari C, Vicenzi E, Bellomi F, Stillitano MG, Pinna D, Poli G, et al. Increased sensitivity of SARS-coronavirus to a combination of human type I and type II interferons. Antivir Ther 2004;9:1003-11.
117. Lokugamage KG, Hage A, De Vries M, Valero-Jimenez AM, Schindewolf C, Dittmann M, et al. Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV. J Virol 2020;94. DOI:10.1128/JVI.01410-20
118. National Health Commission. Diagnosis and treatment protocol for novel coronavirus pneumonia (Trial Version 7). Chin Med J 2020;133:1087-95.
119. Puoci F. Monoclonal-type plastic antibodies for COVID-19 treatment: What Idea? 2020;11:43.
120. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-62.
121. Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents 2020;55:105954.
122. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci 2020;117:10970-5.
123. Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID?19: a single center experience. J Med Virol 2020;92:814-8.
124. https://www.medscape.com/answers/2500114-197456/what-is-the-role-of-the-il-6-inhibitor-sarilumab-kevzara-in-thetreatment-of-coronavirus-disease-2019-covid-19. [Last accessed on 13 Dec 2020]
125. Chihrin S, Loutfy MR. Overview of antiviral and anti-inflammatory treatment for severe acute respiratory syndrome. Expert Rev Anti Infect Ther 2005;3:251-62.
126. Lam CW, Chan MH, Wong CK. Severe acute respiratory syndrome: clinical and laboratory manifestations. Clin Biochem Rev 2004;25:121.
127. Arabi YM, Mandourah Y, Al-Hameed F, Sindi AA, Almekhlafi GA, Hussein MA, et al. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome. Am J Respir Crit Care Med 2018;197:757-67.
128. Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, et al. Dexamethasone in hospitalized patients with Covid-19-preliminary report. N Engl J Med 2020. DOI:10.1056/ NEJMoa2021436
129. Ledford H. Coronavirus breakthrough: dexamethasone is first drug shown to save lives. Nature 2020;582:469.
130. Lester M, Sahin A, Pasyar A. The use of dexamethasone in the treatment of COVID-19. Ann Med Surg 2020;56:218–9.
131. WHO Director-General’s opening remarks at the media briefing on COVID-19. Available from: https://www.who.int/dg/ speeches/detail/who-director-general-s-opening-remarks-at1124the-media-briefing-on-covid-19-22-june-2020. [Last accessed on 13 Dec 2020]
132. Wang H, Ding Y, Li X, Yang L, Zhang W, Kang W. Fatal aspergillosis in a patient with SARS who was treated with corticosteroids. N Engl J Med 2003;349:507-8.
133. Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020;20:398-400.
134. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020;323:1582-9.
135. Cunningham AC, Goh HP, Koh D. Treatment of COVID-19: old tricks for new challenges. Crit Care 2020;24:91.
136. Luo H, Tang QL, Shang YX, Liang SB, Yang M, Robinson N, Liu JP. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med 2020;26:243-50.
137. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003;361:2045-6.
138. Chen F, Chan KH, Jiang Y, Kao RYT, Lu HT, Fan KW, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol 2004;31:69-75.
139. Rajkumar RP. Ayurveda and COVID-19: where psychoneuroimmunology and the meaning response meet. Brain Behav Immun 2020;87:8-9.
140. Parikh N, Parikh D. Role of homoeopathy in COVID-19 management-a clinical experience. World J Pharm Res 2020;9:2459.
141. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020;18:1094-9.
142. Thachil J. The versatile heparin in COVID?19. J Thromb Haemost 2020;18:1020-2.
143. Spyropoulos AC, Ageno W, Barnathan ES. Hospital-based use of thromboprophylaxis in patients with COVID-19. Lancet 2020;395. https://doi.org/10.1016/S0140-6736(20)30926-0
144. Mahmoud DB, Shitu Z, Mostafa A. Drug repurposing of nitazoxanide: can it be an effective therapy for COVID-19? J Genet Eng Biotechnol 2020;18:1-10.
145. Hong SK, Kim HJ, Song CS, Choi IS, Lee JB, Park SY. Nitazoxanide suppresses IL-6 production in LPS-stimulated mouse macrophages and TG-injected mice. Int Immunopharmacol 2012;13:23-7.
146. Hoffmann M, Kleine Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271-80.
147. Venkatalaxmi A, Padmavathi BS, Amaranath T. A general solution of unsteady stokes equations. Fluid Dyn Res 2004;35:229-36.
148. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020;395:e30.
149. Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis 2020;20:400-2.
150. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395:565-74.
151. Sorrell FJ, Szklarz M, Azeez KRA, Elkins JM, Knapp S. Family-wide structural analysis of human numb-associated protein kinases. Structure 2016;24:401-11.
152. Bhargava P, Panda P, Ostwal V, Ramaswamy A. Repurposing valproate to prevent acute respiratory distress syndrome/acute lung injury in COVID-19: A review of immunomodulatory action. Cancer Res Stat Treat 2020;3:65.
153. Lew TW, Kwek TK, Tai D, Earnest A, Loo S, Singh K, et al. Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA 2003;290:374-80.
154. Cao W, Liu X, Bai T, Fan H, Hong K, Song H, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis 2020;7. https://doi.org/10.1093/ofid/ofaa102
155. Xie Y, Cao S, Li Q, Chen E, Dong H, Zhang W, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect 2020;81:318-56.
156. Netea MG, Dominguez Andres J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol 2020;20:375-88.
157. Malaguarnera L. Vitamin D3 as potential treatment adjuncts for COVID-19. Nutrients 2020;12:3512.
158. Holford P, Carr AC, Jovic TH, Ali SR, Whitaker IS, Marik PE, et al. Vitamin C an adjunctive therapy for respiratory infection, sepsis and COVID-19. Nutrients 2020;12:3760.
159. Sebastian J, Ravi MD, Kumar TP. COVID-19 vaccine development, trials and tribulations. Indian J Pharm Educ Res 2020;54:S457-S463.
160. Nair KS, Kamath S, Rajan A, Thomas S, Aswin D, Zachariah SM. Detailed view on repurposed drugs, tracking of vaccines,and brief view on prophylactic nanomedicines as an alternative approach and patient care for covid-19. Int J Appl Pharm 2021;13:19-26.
161. Mahase E. Covid-19: pfizer and biontech submit vaccine for US authorisation. Br Med J 2020;371:m4552.
162. Our COVID-19 Vaccine Study–What’s Next? | Pfizer. Available from: https://www.pfizer.com/news/hot-topics/our_ covid_19_vaccine_study_what_s_next [Last accessed on 16 Dec 2020]
163. Mahase E. Covid-19: what do we know about the late stage vaccine candidates? Br Med J 2020;371:m4576.
164. Mahase E. Covid-19: oxford vaccine is up to 90% effective, interim analysis indicates. Br Med J 2020;371:m4564.
165. Mahase E. Covid-19: Moderna vaccine is nearly 95% effective, trial involving high risk and elderly people shows. Br Med J 2020;371:m4471.
166. Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 2020;395:1845-54.
167. Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 y or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020;396:479-88.
168. Wee SL, Simoes M. In coronavirus vaccine race, China strays from the official paths; 2020. Available from: https://www.nytimes.com/2020/07/16/business/china-vaccine-coronavirus.html [Last accessed on 16 Dec 2020]
169. The Sputnik V vaccine’s efficacy is confirmed at 91.4% based on data analysis of the final control point of clinical trials | Official website vaccine against COVID-19 Sputnik V. Available from: https://sputnikvaccine.com/newsroom/pressreleases/the-sputnik-v-vaccine efficacy-is-confirmed-at-91-4-based-on-data-analysis-of-the-final-control-po/ [Last accessed on 16 Dec 2020].
170. Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatullin AI, Shcheblyakov DV, Dzharullaeva AS, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet 2020;396:887-97.
171. Covid-19 Vaccine Tracker: Latest Updates-The New York Times. Available from: https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html [Last accessed on 16 Dec 2020]
172. Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis 2020. https://doi.org/10.1016/S1473-3099(20)30831-8
173. UAE announces emergency approval for use of COVID-19 vaccine | Reuters. Available from: https://www.reuters.com/article/us-health-coronavirus-emirates-vaccine/uae-announces-emergency-approval-for-use-of-covid-19-vaccine-idUSKBN2652OM [Last accessed on 165 Dec 2020]
174. UAE Approves a Chinese Coronavirus Vaccine, but Doubts Swirl-The New York Times. Available from: https://www.nytimes.com/2020/12/09/business/china-coronavirus-vaccine-united-arab-emirates.html [Last accessed on 16 Dec 2020]
175. Bahrain approves registration for Sinopharm COVID-19 vaccine | Reuters. Available from: https://www.reuters.com/ article/us-health-coronavirus-bahrain/bahrain-approves-registration-for-sinopharm-covid-19-vaccine-idUSKBN28N07Z [Last accessed on 16 Dec 2020]
176. Xia S, Duan K, Zhang Y. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA 2020; 324:951–60.
Statistics
130 Views | 104 Downloads
Citations
How to Cite
HUSSSAIN, M. S., MOHIT, PAMMA, P., & KUMARI, B. (2021). TREATMENT MODALITIES OF THE COVID-19 PANDEMIC THROUGH REPURPOSED DRUGS AND STATUS OF VACCINES. International Journal of Applied Pharmaceutics, 13(2), 48-58. https://doi.org/10.22159/ijap.2021v13i2.40554
Section
Review Article(s)