• ANUP M. AKARTE Department of Pharmaceutics, K. V. P. S.’s Institute of Pharmaceutical Education, Boradi, India
  • PRAKASH H. PATIL Department of Pharmaceutics, K. V. P. S.’s Institute of Pharmaceutical Education, Boradi, India



Nanosponges, Cyclodextrin, Cancer, Curcumin and Nanosystem


Objective: The aim of proposed work is to develop and screen cyclodextrin based Nanosponge loaded with poorly soluble anticancer drug and to optimize most suitable Nanosystem with increased solubility and dissolution rate.

Methods: Cyclodextrinnanosponge (CDNS) was prepared using pyromelliticdianhydride as a crosslinker for beta cyclodextrin monomer. Cyclodextrinnanosponge and curcumin were taken in 1:1 w/w proportion. The resultant curcumin loaded nanosponges were dried at 50±0.5 °C for 24 h.

Results: The absorbance maxima for Curcumin was seen at 424.0 nm and for cyclodextrin was seen at 290.0 nm, The average melting point of pure drug is 181 °C which is complies with Stander melting point of drug and the aspect ratio of the nanosponge was found 1.037. Zeta potential noticed for CUR-CD-NS were more negative contrasted with separate plain CUR (−20.1±1.57) demonstrating solidness of the nanodispersion. Curcumin release from CUR-CDNS was upgraded to very nearly 10 folds toward the finish of 8 hour. Treatment with a combination of CUR-CDNS at 1:1 and 1:3 ratios resulted in an IC50 value was found 14.98 μg/ml.

Conclusion: In vitro cytotoxicity study and combination index analysis showed the synergistic effect of CUR-CDNS against MCF-7 cells. The present study reveals that the combination of curcumin results in higher cytotoxicity against breast cancer cells.


Download data is not yet available.


Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014 Dec;19(12):20091-112. doi: 10.3390/molecules191220091, PMID 25470276.

Gupta SC, Sung B, Kim JH, Prasad S, Li S, Aggarwal BB. Multitargeting by turmeric, the golden spice: from kitchen to clinic. Mol Nutr Food Res. 2013 Sep;57(9):1510-28. doi: 10.1002/mnfr.201100741, PMID 22887802.

Unlu A, Nayir E, Dogukan Kalenderoglu MD, Kirca O, Ozdogan M. Curcumin (Turmeric) and cancer. J Buon. 2016 Sep 1;21(5):1050-60. PMID 27837604.

Lüer SC, Goette J, Troller R, Aebi C. Synthetic versus natural curcumin: bioequivalence in an in vitro oral mucositis model. BMC Complement Altern Med. 2014 Dec;14(1):53. doi: 10.1186/1472-6882-14-53, PMID 24517289.

Singh S. From exotic spice to modern drug? Cell. 2007 Sep 7;130(5):765-8. doi: 10.1016/j.cell.2007.08.024, PMID 17803897.

Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008 Jun;65(11):1631-52. doi: 10.1007/s00018-008-7452-4, PMID 18324353.

Qin F, Huang X, Zhang HM, Ren P. Pharmacokinetic comparison of puerarin after oral administration of Jiawei-Xiaoyao-San to healthy volunteers and patients with functional dyspepsia: influence of disease state. J Pharm Pharmacol. 2009 Jan;61(1):125-9. doi: 10.1211/jpp/61.01.0018, PMID 19126307.

Zhou H, Beevers CS, Huang S. The targets of curcumin. Curr Drug Targets. 2011 Mar 1;12(3):332-47. doi: 10.2174/138945011794815356, PMID 20955148.

Prasad S, Gupta SC, Tyagi AK, Aggarwal BB. Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv. 2014 Nov 1;32(6):1053-64. doi: 10.1016/j.biotechadv.2014.04.004, PMID 24793420.

Kocaadam B, Sanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. 2017 Sep 2;57(13):2889-95. doi: 10.1080/10408398.2015.1077195, PMID 26528921.

Zhu L, Ding X, Zhang D, Yuan Ch, Wang J, Ndegwa E, Zhu G. Curcumin inhibits bovine herpesvirus type 1 entry into MDBK cells. Acta Virol. 2015 Sep 1, Ch Y;59(3):221-7. doi: 10.4149/av_2015_03_221, PMID 26435144.

Baglole KN, Boland PG, Wagner BD. Fluorescence enhancement of curcumin upon inclusion into parent and modified cyclodextrins. J Photochem Photobiol A. 2005 Jul 15;173(3):230-7. doi: 10.1016/j.jphotochem.2005.04.002.

Tønnesen HH. Solubility, chemical and photochemical stability of curcumin in surfactant solutions. Studies of curcumin and curcuminoids, XXVIII. Pharmazie. 2002 Dec 1;57(12):820-4. PMID 12561244.

Kim TH, Jiang HH, Youn YS, Park CW, Tak KK, Lee S, Kim H, Jon S, Chen X, Lee KC. Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int J Pharm. 2011 Jan 17;403(1-2):285-91. doi: 10.1016/j.ijpharm.2010.10.041, PMID 21035530.

Manju S, Sreenivasan K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J Colloid Interface Sci. 2011 Jul 1;359(1):318-25. doi: 10.1016/j.jcis.2011.03.071, PMID 21492865.

Mohanty C, Sahoo SK. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials. 2010 Sep 1;31(25):6597-611. doi: 10.1016/j.biomaterials.2010.04.062, PMID 20553984.

Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Tamura H, Jayakumar R. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr Polym. 2011 Jan 10;83(2):452-61. doi: 10.1016/j.carbpol.2010.08.008.

Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, Tan G, He J, Alb A, John V, Pochampally R. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine. 2012 May 1;8(4):440-51. doi: 10.1016/j.nano.2011.07.011, PMID 21839055.

Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008 Dec 14;60(15):1615-26. doi: 10.1016/j.addr.2008.08.005, PMID 18840489.

Yadav VR, Suresh S, Devi K, Yadav S. Effect of cyclodextrincomplexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech. 2009 Sep;10(3):752-62. doi: 10.1208/s12249-009-9264-8, PMID 19495987.

Swaminathan S, Vavia PR, Trotta F, Torne S. Formulation of betacyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem. 2007 Apr;57(1-4):89-94. doi: 10.1007/s10847-006-9216-9.

Cavalli R, Trotta F, Tumiatti W. Cyclodextrin-based nanosponges for drug delivery. J Incl Phenom Macrocycl Chem. 2006 Oct;56(1-2):209-13. doi: 10.1007/s10847-006-9085-2.

Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv. 2010 Aug 1;17(6):419-25. doi: 10.3109/10717541003777233, PMID 20429848.

Shikha S, Priyanka C, Surendra KJ. Development and performance evaluation of tumor targeting potential of folate spacer functionalized solid lipid nanoparticles, Asian. J Pharmaceuitcaland Clin Res. 2021 Sep 14;6:1-7.

Hirlekar RS, Kadam VJ. Design of buccal drug delivery system for a poorly soluble drug. Asian J Pharm Clin Res. 2009 Jul;2(3):49-53.

Bhanja S, Ellaiah P, Chandan M, Murthy KV, Bibhutibhusan P, Kumar PS. Design and in vitro evaluation of mucoadhesivebuccal tablets of perindopril prepared by sintering technique. Int J Pharm Tech Res. 2010;2(3):1810-23.

Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem. 2012;8(1):2091-9. doi: 10.3762/bjoc.8.235, PMID 23243470.



How to Cite

AKARTE, A. M., & PATIL, P. H. (2022). FORMULATION AND CHARACTERIZATION OF CYCLODEXTRIN BASED CURCUMIN LOADED NANOSPONGE. International Journal of Applied Pharmaceutics, 14(1), 130–138.



Original Article(s)