THE INFLUENCE OF CHLORPROMAZINE HYDROCHLORIDE ON THE THERMOTROPIC BEHAVIOR OF DIMYRISTOYL PHOSPHATIDYLCHOLINE LIPOSOMES AS REVEALED BY DIFFERENTIAL SCANNING CALORIMETRY

Authors

  • FARAH HAMAD FARAH Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, India, Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates https://orcid.org/0000-0003-3339-9743

DOI:

https://doi.org/10.22159/ijap.2022v14i3.42870

Keywords:

CPZ-HCl, Liposomes, Transition temperature, Enthalpy, Entropy

Abstract

Objective: The aim of this study is to investigate the influence of the model cationic, amphiphilic, drug chlorpromazine hydrochloride (CPZ-HCl) on the thermotropic behavior of dimyristoyl phosphatidylcholine (DMPC) liposomes, using differential scanning calorimetry (DSC). The effect of sonication, charged lipids and CPZ-HCl at concentrations known to cause anesthesia on the enthalpy (ΔHt), entropy (ΔSt), phase transition (Tc), pre-transition (pre-TC) and half-height width (HHW) of DSC thermograms were examined.

Methods: The experiments conducted, using the Perkin Elmer (DSC-2C), include the effect of a wide range of CPZ-HCl concentrations on ΔHt, ΔSt, Tc, pre-Tc and HHW of DSC thermograms of DMPC liposomes. The effect of sonication on ΔHt, ΔSt, Tc and HHW of DSC thermograms of DMPC/CPZ-HCl liposomes as a function of sonication time. The effect of both positively charged stearyl amine (ST) and negatively charged diacetyl phosphate (DCP) lipids on ΔHt, ΔSt and Tc of DMPC/CPZ-HCl liposomes. In addition, the effect of CPZ-HCl at concentrations known to cause anesthesia on ΔHt, ΔSt. and Tc of DMPC liposomes in the presence and absence of ST and DCP in phosphate buffer (pH 7.4), was also carried out.

Results: Using DSC, CPZ-HCl concentrations as low as 1×10-7M were observed to alter the gel-liquid crystalline phase transition and thus to possess a membrane destabilizing effect. CPZ-HCl reduces ΔHt, ΔSt, TC, the pre-TC and increases HHW of DMPC liposomes. ΔHt and ΔSt of DMPC liposomes were observed to decrease with increasing CPZ-HCl concentrations, exhibiting an inflection point at 5×10-5M. ΔHt of DMPC liposomes was observed to decrease linearly in the absence and presence of and CPZ-HCl as a function of sonication time. Both ΔHt and ΔSt of DMPC liposomes were observed to increase in the presence of cationic lipid (ST) and to decrease in the presence of anionic lipid (DCP). ΔSt and Tc of DMPC, DMPC/ST, DMPC/DCP liposomes, were found to decrease as a function of CPZ-HCl concentrations known to cause anesthesia.

Conclusion: Using DSC, CPZ-HCl concentrations, as low as 1×10-7 M were observed to influence the enthalpy, entropy, phase transition, pre-transition and half-height width of DSC thermograms of DMPC liposomes, altering the gel-liquid crystalline phase transition and thus possessing a membrane destabilizing effect. It can also be inferred that CPZ-HCl interacts with both the polar head group and the hydrophobic interior of the phospholipid bilayer. These results could support the hypothesis that the addition of local anesthetics might trigger a change in the lipid surrounding the sodium channel from the gel to the liquid crystalline state, allowing the sodium channel to close with the resulting anesthesia.

Downloads

Download data is not yet available.

References

Bonde S, Nair S. Advances in liposomal drug delivery system: fascinating types and potential applications. Int J App Pharm. 2017;9(3):1-7. doi: 10.22159/ijap.2017v9i3.17984.

Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016;23(9):3319-29. doi: 10.1080/10717544.2016.1177136, PMID 27145899.

Sharma S, Kumar V. In vitro cytotoxicity effect on mcf-7cell line of co-encapsulated artesunate and curcumin liposome. Int J Pharm Pharm Sci. 2016;8:286-92.

Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975-99. doi: 10.2147/IJN.S68861, PMID 25678787.

Chen J, Cheng D, Li J, Wang Y, Guo JX, Chen ZP, Cai BC, Yang T. Influence of lipid composition on the phase transition temperature of liposomes composed of both DPPC and HSPC. Drug Dev Ind Pharm. 2013;39(2):197-204. doi: 10.3109/03639045.2012.668912, PMID 22443684.

Popova AV, Hincha DK. Thermotropic phase behavior and headgroup interactions of the non-bilayer lipids phosphatidylethanolamine and monogalactosyldiacylglycerol in the dry state. BMC Biophys. 2011;4:1-11.

Chiu MH, Prenner EJ. Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci. 2011;3(1):39-59. doi: 10.4103/0975-7406.76463, PMID 21430954.

Demetzos C. Differential scanning calorimetry (DSC): A tool to study the thermal behavior of lipid bilayers and liposomal stability. Journal of Liposome Research. 2008;18(3):159-73. doi: 10.1080/08982100802310261.

Koynova R, Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim biophys Acta. 1998;1376(1):91-145. doi: 10.1016/s0304-4157(98)00006-9, PMID 9666088.

Epand RM, Epand RF. Studies of thermotropic phospholipid phase transitions using scanning densitometry. Chem Phys Lipids. 1980;27(2):139-50. doi: 10.1016/0009-3084(80)90019-5.

Melchior DL, Morowitz HJ. Dilatometry of dilute suspensions of synthetic lecithin aggregates. Biochemistry. 1972;11(24):4558-62. doi: 10.1021/bi00774a020, PMID 4654143.

Trauble H, Overath P. The structure of Escherichia coli membranes studied by fluorescence measurements of lipid phase transitions. Biochim biophys acta. 1973;307(3):491-512. doi: 10.1016/0005-2736(73)90296-4, PMID 4581497.

Small DM. Phase equilibria and structure of dry and hydrated egg lecithin. J Lipid Res. 1967;8(6):551-7. doi: 10.1016/S0022-2275(20)38874-X, PMID 6057484.

Kornberg RD, McConnell HM. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry. 1971;10(7):1111-20. doi: 10.1021/bi00783a003, PMID 4324203.

Veksli Z, Salsbury NJ, Chapman D. Physical studies of phospholipids. XII. Nuclear magnetic resonance studies of molecular motion in some pure lecithin-water systems. Biochim Biophys Acta. 1969;183(3):434-46. doi: 10.1016/0005-2736(69)90158-8, PMID 5822816.

Koynova R, Caffrey M. An index of lipid phase diagrams. Chem Phys Lipids. 2002;115(1-2):107-219. doi: 10.1016/s0009-3084(01)00200-6, PMID 12047902.

Weinstein JN, Magin RL, Yatvin MB, Zaharko DS. Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors. Science. 1979;204(4389):188-91. doi: 10.1126/science.432641, PMID 432641.

Papahadjopoulos D, Jacobson K, Nir S, Isac T. Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim Biophys Acta. 1973;311(3):330-48. doi: 10.1016/0005-2736(73)90314-3, PMID 4729825.

Underhaug Gjerde A, Holmsen H, Nerdal W. Chlorpromazine interaction with phosphatidylserines: a 13C and 31P solid-state NMR study. Biochim Biophys Acta. 2004;1682(1-3):28-37. doi: 10.1016/j.bbalip.2004.01.004. PMID 15158753.

Wisniewska A, Wolnicka Glubisz A. ESR studies on the effect of cholesterol on chlorpromazine interaction with saturated and unsaturated liposome membranes. Biophys Chem. 2004;111(1):43-52. doi: 10.1016/j.bpc.2004.04.001, PMID 15450374.

Lucio M, Lima JLFC, Reis S. Drug-membrane interactions: significance for medicinal chemistry. Curr Med Chem. 2010;17(17):1795-809. doi: 10.2174/092986710791111233, PMID 20345343.

Ahmed M, Burton JS, Hadgraft J, Kellaway IW. Thermodynamics of partitioning and efflux of phenothiazines from liposomes. J Membr Biol. 1981;58(3):181-9. doi: 10.1007/BF01870904, PMID 7218338.

Razin S, Tourtellotte ME, McElhaney RN, Pollack JD. Influence of lipid components of Mycoplasma laidlawii membranes on osmotic fragility of cells. J Bacteriol. 1966;91(2):609-16. doi: 10.1128/jb.91.2.609-616.1966, PMID 5883100.

Silvius JR, Read BD, McElhaney RN. Thermotropic phase transitions of phosphatidylcholines with odd-numbered n-acyl chains. Biochim Biophys Acta. 1979;555(1):175-8. doi: 10.1016/0005-2736(79)90081-6, PMID 476097.

Nerdal W, Gundersen SA, Thorsen V, Høiland H, Holmsen H. Chlorpromazine interaction with glycerophospholipid liposomes studied by magic angle spinning solid state 13C-NMR and differential scanning calorimetry. Biochim Biophys Acta. 2000;1464(1):165-75. doi: 10.1016/s0005-2736(00)00125-5, PMID 10704930.

Chapman D, Byrne P, Shipley GG. The physical properties of phospholipids I. Solid state and mesomorphic properties of some 2,3-diacyl-DL-phosphatidylethanolamines. Proc R Soc Lond A. 1966;290:115.

Barton PG, Gunstone FD. Hydrocarbon chain packing and molecular motion in phospholipid bilayers formed from unsaturated lecithins. Synthesis and properties of sixteen positional isomers of 1,2-dioctadecenoyl-sn-glycero-3-phosphorylcholine. J Biol Chem. 1975;250(12):4470-6. doi: 10.1016/S0021-9258(19)41327-6, PMID 1141217.

Eibl H, Blume A. The influence of charge on phosphatidic acid bilayer membranes. Biochim Biophys Acta. 1979;553(3):476-88. doi: 10.1016/0005-2736(79)90303-1, PMID 36911.

Blume A, Eibl H. The influence of charge on bilayer membranes. Calorimetric investigations of phosphatidic acid bilayers. Biochim Biophys Acta. 1979;558(1):13-21. doi: 10.1016/0005-2736(79)90311-0, PMID 40599.

Brady GW, Fein DB. An analysis of the X-ray interchain peak profile in dipalmitoylglycerophosphocholine. Biochim Biophys Acta. 1977;464(2):249-59. doi: 10.1016/0005-2736(77)90001-3, PMID 831796.

Hinz HJ, Sturtevant JM. Calorimetric investigation of the influence of cholesterol on the transition properties of bilayers formed from synthetic L-lecithins in aqueous suspension. J Biol Chem. 1972;247(11):3697-700. doi: 10.1016/S0021-9258(19)45197-1, PMID 5030639.

Darke A, Finer EG, Flook AG, Phillips MC. Nuclear magnetic resonance study of lecithin-cholesterol interactions. J Mol Biol. 1972;63(2):265-79. doi: 10.1016/0022-2836(72)90374-9, PMID 4634508.

Saito YD, Tehrani S, Okamoto MM, Chang HH, Dea P. Calorimetry studies of chlorpromazine hydrochloride in solution. Langmuir. 2000;16(16):6391-5. doi: 10.1021/la991297l.

Ahmed AMS, Farah FH, Kellaway IW. The thermodynamics of partitioning of phenothiazines between phosphate buffer and the lipid phases of cyclohexane, n-octanol and DMPC liposomes. Pharm Res. 1985;2(3):119-24. doi: 10.1023/A:1016359215869, PMID 24272688.

Holte LL, Separovic F, Gawrisch K. Nuclear magnetic resonance investigation of hydrocarbon chain packing in bilayers of polyunsaturated phospholipids. Lipids. 1996;31Suppl:S199-203. doi: 10.1007/BF02637076, PMID 8729119.

Van den Besselaar AM, De Druijff B, Van den Bosch H, Van Deenen LL. Phosphatidylcholine mobility in liver microsomal membranes. Biochim Biophys Acta. 1978;510(2):242-55. doi: 10.1016/0005-2736(78)90024-x, PMID 667042.

Lee AG. Model for the action of local anaesthetics. Nature. 1976;262(5569):545-8. doi: 10.1038/262545a0, PMID 958412.

Published

07-05-2022

How to Cite

FARAH, F. H. (2022). THE INFLUENCE OF CHLORPROMAZINE HYDROCHLORIDE ON THE THERMOTROPIC BEHAVIOR OF DIMYRISTOYL PHOSPHATIDYLCHOLINE LIPOSOMES AS REVEALED BY DIFFERENTIAL SCANNING CALORIMETRY. International Journal of Applied Pharmaceutics, 14(3), 103–109. https://doi.org/10.22159/ijap.2022v14i3.42870

Issue

Section

Original Article(s)