• NARESH KUMAR AHUJA Bhupal Nobels University, Udaipur, Rajasthan, India
  • JITENDRA SINGH RAJAWAT Bhupal Nobels University, Udaipur, Rajasthan, India



Rheumatoid arthritis, Lipid nanoparticle, Inflammation, Drug delivery


Recent advances in science and technology and greatly modified the way we stumble on, deal with and prevent special diseases in all components of human lifestyles. Rheumatoid arthritis (RA) is the most not unusual complex multifactorial joint related autoimmune, chronic, severe systemic inflammatory ailment with unknown etiology completed with increased cardiovascular risks. It is regularly associated with critical synovial joint inflammation, autoantibody production, cartilage/bone tissue destruction, cardiovascular, pulmonary, skeletal disorders and massive inflammatory infiltration which might in the end motive extreme disability, huge complications, premature mortality and decreased life quality. Pro-inflammatory cytokines like IL-1, IL-6, IL-8 and IL-10 were dependable for the induction of inflammation in RA patients.  It has a global occurrence of around 1% with the incidence among women being 2-3 times extra in men. Preclinical RA, genetic variables, and environmental factors have all been linked to the disease's etiology. Because there is no known cure for RA, the primary goal of treatment is to achieve the shortest possible illness duration and, if possible, rehabilitation. Current clinical remedies of RA display numerous drawbacks which include excessive doses, common administration, speedy metabolism, bad absorption, low responsiveness, higher cost and serious side consequences. These obstacles have inspired extremely good growth of the studies and to enhance those obstacles, nanoparticles that are able to encapsulating and protecting tablets from degradation earlier than they reach the target site in vivo, might also function drug delivery structures. Bioavailability and therapeutic bioactivity can be improved, and limited emphasis on damaged joints can be allowed. The current study provides a platform for different lipid nanoparticle methods for RA therapy, using the newly developing field of lipid nanoparticles to improve a targeted theranostic device for RA treatment. This review aims to present the most recent major application of lipid nanoparticles as a biocompatible and biodegradable transport device for improving RA concentration on over free drugs by presenting tissue-specific concentrated on of ligand-controlled drug release by modulating nanoparticle composition. Additionally, we also discuss the pivotal demanding situations to be addressed, as well as destiny views. Therefore, it is feasible to claim that nanoparticles will, within the near future, play a critical role in advanced treatment and affected person-particular cures for human diseases which include RA.


Download data is not yet available.


D. Aletaha, T. Neogi, A.J. Silman, J. Funovits, D.T. Felson, C.O. Bingham, N.S. Birnbaum, G.R. Burmester, V.P. Bykerk, M.D. Cohen, 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative, Arthritis Rheum. 62 (9) (2010) 2569-2581.

D.P. Symmons, Epidemiology of rheumatoid arthritis: determinants of onset, persistence and outcome Best, Pract. Res. Clin. Rheumatol. 16 (5) (2002) 707-722.

T. Dorner, V. Strand, P. Cornes, J. Goncalves, L. Gulacsi, J. Kay, T.K. Kvien, J. Smolen, Y. Tanaka, G.R. Burmester, The changing landscape of biosimilars in rheumatology, Ann Rheum Dis. 75(6) (2016) 974-82.

A. Gibofsky, Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis, Am. J. Manage. Care 18 (Suppl. 13) (2012) S295-302.

R. Handa, U. Rao, J.F. Lewis, G. Rambhad, S. Shiff, C.J. Ghia, Literature review of rheumatoid arthritis in India, Int. J. Rheum. Dis. 19 (5) (2016) 440-451.

B.J. Crielaard, T. Lammers, R.M. Schiffelers, G. Storm, Drug targeting systems for inflammatory disease: one for all, all for one, J. Control. Release 161 (2) (2012) 225-234.

W. Grassi, R. De Angelis, G. Lamanna, C. Cervini, The clinical features of rheumatoid arthritis, Eur. J. Radiol. 27 (1998) S18-S24.

T. Kanazawa, J. Nishino, S. Tohma, S. Tanaka, Analysis of the affected joints in rheumatoid arthritis patients in a large Japanese cohort, Mod. Rheumatol. 23 (1) (2013) 44-49.

Pfizer value of medicines, Rheumatoid Arthritis and the Value of Treatment Global Policy and International Public Affairs. (2014) (accessed 12 Dec 2017)

A.J. Svendsen , P. Junker, G. Houen, K.O. Kyvik, C. Nielsen, A. Skytthe , R. Holst, Incidence of Chronic Persistent Rheumatoid Arthritis and the Impact of Smoking: A Historical Twin Cohort Study, Arthritis Care & Research 69(5) (2016) 616-624.

M. Yang, X. Feng, J. Ding, F. Chang, X. Chen, Nanotherapeutics relieve rheumatoid arthritis, J Control Release. 252 (2017) 108-124.

I.B McInnes, G. Schett, Pathogenetic insights from the treatment of rheumatoid Arthritis, Lancet 389 (2017) 2328-2337.

Janakiraman K, Krishnaswami V, Rajendran V, Natesan S, Kandasamy R, Novel Nano therapeutic materials for the effective treatment of Rheumatoid Arthritis- recent insights, Materials Today Communications (2018),

F. Montecucco, F. Mach, Common inflammatory mediators orchestrate pathophysiological processes in rheumatoid arthritis and atherosclerosis, Rheumatology 48 (1) (2008) 11–22.

K.D. Deane, J.M. Norris, V.M. Holers, Preclinical rheumatoid arthritis: identification, evaluation, and future directions for investigation, Rheum. Dis. Clin. North Am. 36 (2) (2010) 213–241.

A.J. Silman, J.E. Pearson, Epidemiology and genetics of rheumatoid arthritis, Arthritis Res. Ther. 4 (3) (2002) S265.

K.P. Liao, L. Alfredsson, E.W. Karlson, Environmental influences on risk for rheumatoid arthritis, Curr. Opin. Rheumatol. 21 (3) (2009) 279.

K.D. Deane, H. El-Gabalawy, Pathogenesis and prevention of rheumatic disease: focus on preclinical RA and SLE, Nat. Rev. Rheumatol. 10 (4) (2014) 212–228.

D. Aletaha, F. Alasti, J.S. Smolen, Rheumatoid factor, not antibodies against citrullinated proteins, is associated with baseline disease activity in rheumatoid arthritis clinical trials, Arthritis Res. Ther. 17 (1) (2015) 229.

C. Edwards, C. Cooper, Early environmental factors and rheumatoid arthritis, Clin. Exp. Immunol. 143 (1) (2006) 1–5.

J. Newton, S. Harney, B. Wordsworth, M. Brown, A review of the MHC genetics of rheumatoid arthritis, Genes Immun. 5 (3) (2004) 151–157.

A. Suzuki, R. Yamada, X. Chang, S. Tokuhiro, T. Sawada, M. Suzuki, M. Nagasaki, M. Nakayama-Hamada, R. Kawaida, M. Ono, Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis, Nature Genet. 34 (4) (2003) 395–402.

R.M. Plenge, L. Padyukov, E.F. Remmers, S. Purcell, A.T. Lee, E.W. Karlson, F. Wolfe, D.L. Kastner, L. Alfredsson, D. Altshuler, Replication of putative candidate- gene associations with rheumatoid arthritis in& 4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4, Am. J. Hum. Genet. 77 (6) (2005) 1044–1060.

Y. Kochi, Y. Okada, A. Suzuki, K. Ikari, C. Terao, A. Takahashi, K. Yamazaki, N. Hosono, K. Myouzen, T. Tsunoda, A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility, Nature Genet. 42 (6) (2010) 515–519.

Y. Okada, C. Terao, K. Ikari, Y. Kochi, K. Ohmura, A. Suzuki, T. Kawaguchi, E.A. Stahl, F.A. Kurreeman, N. Nishida, Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population, Nat. Genet. 44 (5) (2012) 511–516.

E. Salgado, M. Bes-Rastrollo, J. de Irala, L. Carmona, J.J. Gomez-Reino, High sodium intake is associated with self-reported rheumatoid arthritis: a cross sectional and case control analysis within the SUN cohort, Medicine (Baltimore) 94 (37) (2015).

I. Lazúrová, I. Jochmanová, K. Benhatchi, Š. Sotak, Autoimmune thyroid disease and rheumatoid arthritis: relationship and the role of genetics, Immunol. Res. 60 (2-3) (2014) 193–200.

J. Schmitt, K. Schwarz, H. Baurecht, M. Hotze, R. Fölster-Holst, E. Rodríguez, Y.A. Lee, A. Franke, F. Degenhardt, W. Lieb, Atopic dermatitis is associated with an increased risk for rheumatoid arthritis and inflammatory bowel disease, and a decreased risk for type 1 diabetes, J. Allergy Clin. Immunol. 137 (1) (2016) 130–136.

R.J. Oken, M. Schulzer, At issue: schizophrenia and rheumatoid arthritis: the negative association revisited, Schizophr. Bull. 25 (4) (1999) 625–638.

P. Stolt, C. Bengtsson, B. Nordmark, S. Lindblad, I. Lundberg, L. Klareskog, L. Alfredsson. Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population based case-control study, using incident cases, Ann. Rheum. Dis. 62 (9) (2003) 835–841.

J.E. Hart, F. Laden, R.C. Puett, K.H. Costenbader, E.W. Karlson, Exposure to traffic pollution and increased risk of rheumatoid arthritis, Environ. Health Perspect. 117 (7) (2009) 1065–1069.

H.R. Harris, K.H. Costenbader, F. Mu, M. Kvaskoff, S. Malspeis, E.W. Karlson, S.A. Missmer, Endometriosis and the risks of systemic lupus erythematosus and rheumatoid arthritis in the Nurses’ Health Study II, Ann. Rheum. Dis. 75 (7) (2016) 1279–1284.

Sourav Thakur, Bushra Riyaz, Akshay Patil, Amanjot Kaur, Bhupinder Kapoor, Vijay Mishra. Novel drug delivery systems for NSAIDs in management of rheumatoid arthritis: An overview. Biomedicine & Pharmacotherapy 106 (2018) 1011–1023.

C.T. Kraft, S. Agarwal, K. Ranganathan, V.W. Wong, S. Loder, J. Li, M.J. Delano, B. Levi, Trauma induced heterotopic bone formation and the role of the immune system: A Review, J Trauma Acute Care Surg. 80(1) (2016) 156-165.

G. Jones, P. Nash, S. Hall, Advances in rheumatoid arthritis, Med J Aust. 206(5) (2017) 221-224.

M. I. Koenders and W. B. van den Berg, Trends Pharmacol. Sci., 2015, 36, 189–195.

F. Yuan, L. D. Quan, L. Cui, S. R. Goldring and D. Wang, Adv. Drug Delivery Rev., 2012, 64, 1205–1219.

M. Yang, X. Feng, J. Ding, F. Chang and X. Chen, J. Controlled Release, 2017, 252, 108–124.

R. F. van Vollenhoven, Nat. Rev. Rheumatol., 2009, 5, 531– 541.

S. Dolati, S. Sadreddini, D. Rostamzadeh, M. Ahmadi, F. Jadidi-Niaragh and M. Yousefi, Biomed. Pharmacother., 2016, 80, 30–41.

I. H. Tarner and U. Müller-Ladner, Expert Opin. Drug Delivery, 2008, 5, 1027–1037.

L. K. Prasad, H. O’Mary and Z. Cui, Nanomedicine, 2015, 10, 2063–2074.

S. Mitragotri and J. W. Yoo, Arch. Pharmacal Res., 2011, 34, 1887–1897.

M. H. Buch, S. J. Bingham, D. Bryer and P. Emery, Rheumatology, 2007, 46, 1153–1156.

K. Chaudhari, S. Rizvi and B. A. Syed, Nat. Rev. Drug Discovery, 2016, 15, 305–306.

J. Listing, A. Strangfeld, S. Kary, R. Rau, U. von Hinueber, M. Stoyanova-Scholz, E. Gromnica-Ihle, C. Antoni, P. Herzer, J. Kekow, M. Schneider and A. Zink, Arthritis Rheum., 2005, 52, 3403–3412.

Rao, J.K.; Mihaliak, K.; Kroenke, K.; Bradley, J.; Tierney, W.M. and Weinberger, M. (1999). Use of complementary therapies for arthritis among patients of rheumatologists. Annals of Internal Medicine, 131: 409- 416.

Chandrasekar, R. and Chandrasekar, S. (2017). Natural herbal treatment for rheumatoid arthritis-A review. International Journal of Pharmaceutical Sciences and Research, 8(2): 368.

M. Movahedi, M.E. Beauchamp, M. Abrahamowicz, D.W. Ray, K. Michaud, S. Pedro, W.G. Dixon, Risk of incident diabetes mellitus associated with the dosage and duration of oral glucocorticoid therapy in patients with rheumatoid arthritis, Arthritis Rheumatol. 68(5) (2016) 1089-1098.

H. Bahadar, F. Maqbool, K. Niaz, M. Abdollahi, Toxicity of nanoparticles and an overview of current experimental models, Iran Biomed J. 20(1) (2016) 1-11.

L. Xu, X. Qi, X. Li, Y. Bai, H. Liu, Recent advances in applications of nanomaterials for sample preparation, Talanta 146 (2016) 714-726.

Y. Panahi, M. Farshbaf, M. Mohammadhosseini, M. Mirahadi, R. Khalilov, S. Saghfi, A. Akbarzadeh, Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications, Artif Cells Nanomed Biotechnol. 45(4) (2017) 788-799.

R. Heloise, F. Danhier, V. Preat, R. Langer, D.G. Anderson, Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures, Expert opion on drug delivery 14 (7) (2017) 851-864.

S. Dolati, S. Sadreddini, D. Rostamzadeh, M. Ahmadi, F. Jadidi-Niaragh, M. Yousefi, Utilization of nanoparticle technology in rheumatoid arthritis treatment, Biomed Pharmacother. 80 (2016) 30-41.

E. Nogueira, A.C. Gomes, A. Preto, A. Cavaco-Paulo, Folate-targeted nanoparticles for rheumatoid arthritis therapy, Nanomedicine 12(4) (2016) 1113-1126.

Q. Thao le, H.J. Byeon, C. Lee, S. Lee, E.S. Lee, H.G. Choi, E.S. Park, Y.S. Youn, Pharmaceutical potential of tacrolimus-loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues, Int J Pharm. 497(1-2) (2016) 268-76.

S. Behzadi, V. Serpooshan, W. Tao, M.A. Hamaly, M.Y. Alkawareek, E.C. Dreaden, D. Brown, A.M. Alkilany, O.C. Farokhzad, M. Mahmoudi, Cellular uptake of nanoparticles: journey inside the cell, Chem Soc Rev. 46(14) (2017) 4218-4244.

S. Dolati, S. Sadreddini, D. Rostamzadeh, M. Ahmadi, F. Jadidi-Niaragh, M. Yousefi, Utilization of nanoparticle technology in rheumatoid arthritis treatment, Biomed Pharmacother. 80 (2016) 30-41.

T.M. Ahmed, B.M. Aljaeid, Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery, Drug Des Devel Ther. 10 (2016) 483-507.

S D. Rao, Rheumatoid arthritis (ra) disease treatment with rutin stabilized nanoparticles, Austin J. Biotechnol Bioeng. 2(2) (2015) 1043.

S.N. Lee, H.J. Kim, Y.J. Ha, Y.N. Park, S.K. Lee, Y.B. Park, K.H. Yoo, Targeted chemophotothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles, ACS. 7(1) (2012) 50-57.

N. Kishore, M.D. Raja, C.S. Kumar, U. Dhanalekshmi, R. Srinivasan, Lipid carriers for delivery of celecoxib: In-vitro, in-vivo assessment of nanomedicine in rheumatoid arthritis, Eur. J. Lipid Sci. Technol. 118 (2016) 949-958.

V. Kumar, A. Leekha, A. Tyagi, A. Kaul, A.K. Mishra, A.K. Verma, Preparation and evaluation of biopolymeric nanoparticles as drug delivery system in effective treatment of rheumatoid arthritis, Pharm Res. 34(3) (2017) 654-667.

A.K. Dewangan, S. Varkey, S. Mazumder, Synthesis of curcumin loaded CMCAB nanoparticles for the treatment of rheumatoid arthritis, IJCEBS. (2015) 18-19.

S.M. Lee, H.J. Kim, Y.J. Ha, Y.N. Park, S.K. Lee, Y.B. Park, K.H. Yoo, Targeted chemophotothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles, ACS Nano. 7(1) (2013) 50-57.

L.Q. Thao, H.J. Byeon, C. Lee, S. Lee, E.S. Lee, H.G. Choi, E.S. Park, Y.S. Youn, Pharmaceutical potential of tacrolimus-loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues, Int. J. Pharm. 497 (2016) 268-276.

R. Kumar, A. Singh, N. Garg, P.F. Siril, Solid lipid nanoparticles for the controlled delivery of poorly water soluble non-steroidal anti-inflammatory drugs. Ultrason Sonochem. 40(Pt A) (2018) 686-696.

M. Geszke Moritz, M. Moritz, Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies, Materials science and engineering C 68 (2016) 982-994.

N.K. Garg, B. Singh, R.K. Tyagi, G. Sharma, O.P. Katare, Effective transdermal delivery of methotrexate through nanostructured lipid carriers in an experimentally induced arthritis model. Colloids Surf B Biointerfaces 147 (2016) 17-24.

D. Chavan, B. Gangode, A. Jadhav, M. Patil, S. Kshirsagar, Solid lipid nanoparticles: A modern formulation approach in drug delivery system, IJOD. 5(2) (2017) 56-70.

R. Arora, A. Kuhad, I.P. Kaur, K. Chopra, Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats, Eur J Pain. 19(7) (2014) 940-952.

L.H. Peng, W. Wei, Y.H. Shan, Y.S. Chong, L. Yu. J.Q. Gao, Sustained release of piroxicam from solid lipid nanoparticle as an effective anti-inflammatory therapeutics in-vivo, Drug Dev. Ind. Pharm. 43(1) (2016) 55-66.

M.R. Bhalekar, A.R. Madgulkar, P.S. Desale, G. Marium. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis, Drug Dev Ind Pharm. 43(6) (2017) 1003-1010.

R. Raj, P. Mongia, A. Ram, N.K. Jain, Enhanced skin delivery of aceclofenac via hydrogel-based solid lipid nanoparticles, Artif Cells Nanomed Biotechnol. 44(6) (2016) 1434-1439.

J. Ye, Q. Wang, X. Zhou, N. Zhang, Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis, Int. J. Pharm. 352 (2008) 273-279.

Gilani SJ, Bin-Jumah MN, Imam SS, Alshehri S, Jahangir MA, Zafar A (2021) Formulation and Optimization of Nano Lipid Based Oral Delivery Systems for Arthritis. Coatings 11(5):548.

Mancini, G., Goncalves, L., Marto, J., Carvalho, F.A., Simoes, S., Ribeiro, H.M. and Almeida, A.J., (2021) Increased Therapeutic Efficacy of SLN Containing Etofenamate and Ibuprofen in Topical Treatment of Inflammation. Pharmaceutics 13(3): 328.

Zhang, F., Liu, Z., He, X., Li, Z., Shi, B. and Cai, F. (2020) β-Sitosterol-loaded solid lipid nanoparticles ameliorate complete Freund’s adjuvant-induced arthritis in rats: involvement of NF-кB and HO-1/Nrf-2 pathway. Drug delivery 27(1):1329-1341.

Chaudhari, P.M. and Ghodake, M.V., (2019) Development and optimization of solid lipid nanoparticle for topical delivery. Journal of Drug Delivery and Therapeutics 9(5):105-121.

Shinde S. V., Nikam S., Raut P. and Ghag M. K (2019) Lipid nanoparticles for transdermal delivery of celecoxib: an in vitro and in vivo investigation. Indian drugs 56 (8): 38-48.

Kumar, R., Singh, A., Garg, N. and Siril, P.F., (2018) Solid lipid nanoparticles for the controlled delivery of poorly water soluble non-steroidal anti-inflammatory drugs. Ultrasonics sonochemistry 40: 686-696.

Shih-Yi Chuang, Chih-Hung Lin, Tse-Hung Huang and Jia-You Fang Lipid-Based Nanoparticles as a Potential Delivery Approach in the Treatment of Rheumatoid Arthritis. Nanomaterials 2018, 8, 42;

Purcell WT, Ettinger DS (2003) Novel antifolate drugs. Curr Oncol Rep 5(2):114–125

Bleyer WA (1978) The clinical pharmacology of methotrexate: new applications of an old drug. Cancer 41(1):36–51

Grim J, Chladek J, Martinkova J (2003) Pharmacokinetics and pharmacodynamics of methotrexate in non-neoplastic diseases. Clin Pharmacokinet 42(2):139–151

Cutolo M et al (2001) Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis 60(8): 729–735

Lee DM, Weinblatt ME (2001) Rheumatoid arthritis. Lancet 358(9285):903–911

Tarner IH, Mu¨ller-Ladner U (2008) Drug delivery systems for the treatment of rheumatoid arthritis. Expert Opin Drug Deliv 5(9):1027–1037

Rahman LK, Chhabra SR (1988) The chemistry of methotrexate and its analogues. Med Res Rev 8(1):95–155

Chatterji DC, Gallelli JF (1978) Thermal and photolytic decomposition of methotrexate in aqueous solutions. J Pharm Sci 67(4):526–531

Genestier L et al (2000) Mechanisms of action of methotrexate. Immunopharmacology 47(2–3):247–257

Cutolo M et al (2000) Antiproliferative and anti-inflammatory effects of methotrexate on cultured differentiating myeloid monocytic cells (THP-1) but not on synovial macrophages from patients with rheumatoid arthritis. J Rheumatol 27(11): 2551–2557

Hillson JL, Furst DE (1997) Pharmacology and pharmacokinetics of methotrexate in rheumatic disease. Practical issues in treatment and design. Rheum Dis Clin North Am 23(4):757–778

Cronstein BN (1997) The mechanism of action of methotrexate. Rheum Dis Clin North Am 23(4):739–755

Koch AE, Distler O (2007) Vasculopathy and disordered angiogenesis in selected rheumatic diseases: rheumatoid arthritis and systemic sclerosis. Arthritis Res Ther 9(Suppl 2):S3

Koning GA et al (2006) Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphatecontaining RGD peptide liposomes inhibits experimental arthritis. Arthritis Rheum 54(4):1198–1208

Gaffo A, Saag KG, Curtis JR (2006) Treatment of rheumatoid arthritis. Am J Health Syst Pharm 63(24):2451–2465

Levick JR (1981) Permeability of rheumatoid and normal human synovium to specific plasma proteins. Arthritis Rheum 24(12):1550–1560

Levick JR (1995) Microvascular architecture and exchange in synovial joints. Microcirculation 2(3):217–233

Levick JR (1990) Hypoxia and acidosis in chronic inflammatory arthritis; relation to vascular supply and dynamic effusion pressure. J Rheumatol 17(5):579–582

Halin C, Neri D (2001) Antibody-based targeting of angiogenesis. Crit Rev Ther Drug Carrier Syst 18(3):299–339

Nagai T et al (2006) In vitro and in vivo efficacy of a recombinant immunotoxin against folate receptor beta on the activation and proliferation of rheumatoid arthritis synovial cells. Arthritis Rheum 54(10):3126–3134

Trachsel E et al (2007) Antibody-mediated delivery of IL-10 inhibits the progression of established collagen-induced arthritis. Arthritis Res Ther 9(1):R9.

Taheri A et al (2011) Nanoparticles of conjugated methotrexate-human serum albumin: preparation and cytotoxicity evaluations.J Nanomaterials, Art ID 768201

Taheri A et al (2012) The in vivo antitumor activity of LHRH targeted methotrexate-human serum albumin nanoparticles in 4T1 tumor-bearing Balb/c mice. Int JPharm 431(1–2):183–189

Taheri A et al (2012) Enhanced anti-tumoral activity of methotrexate- human serum albumin conjugated nanoparticles by targeting with luteinizing hormone-releasing hormone (LHRH) peptide. Int J Mol Sci 12(7):4591–4608

Taheri A et al (2012) Targeted delivery of methotrexate to tumor cells using biotin functionalized methotrexate-human serum albumin conjugated nanoparticles. J Biomed Nanotechnol 7(6): 743–753

Taheri A et al (2012) Use of biotin targeted methotrexate-human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy. Int J Nanomed 6:1863–1874

Taheri A et al (2012) Trastuzumab decorated methotrexate-human serum albumin conjugated nanoparticles for targeted delivery to HER2 positive tumor cells. Eur J Pharm Sci 47(2): 331–340

Jain S et al (2011) Synthesis, pharmacoscintigraphic evaluation and antitumor efficacy of methotrexate-loaded, folate-conjugated, stealth albumin nanoparticles. Nanomedicine (Lond) 6(10): 1733–1754

Trapani A et al (2011) Methotrexate-loaded chitosan- and glycol chitosan-based nanoparticles: a promising strategy for the administration of the anticancer drug to brain tumors. AAPS Pharm Sci Tech 12(4):1302–1311

Azadi A et al (2012) Preparation and optimization of surface treated methotrexate-loaded nanogels intended for brain delivery. Carbohydrate Polym 90(1):462–471

Ji JG et al (2012) Preparation, characterization, and in vitro release of folic acid-conjugated chitosan nanoparticles loaded with methotrexate for targeted delivery. Polym Bull 68(6): 1707–1720

Reddy LH, Murthy RR (2004) Influence of polymerization technique and experimental variables on the particle properties and release kinetics of methotrexate from poly(butylcyanoacrylate) nanoparticles. Acta Pharmaceutica 54(2):103–118

Gao K, Jiang X (2006) Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm 310(1–2):213–219.

Cascone MG et al (2002) Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J Mater Sci Mater Med 13(5):523–526.



How to Cite




Review Article(s)