• ZOYA S. SHPRAKH N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRCO), 24 Kashirskoye sh., Moscow, 115478, Russia
  • YANA A. POSKEDOVA I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya st., Moscow, 119991, Russia
  • GALINA V. RAMENSKAYA I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya st., Moscow, 119991, Russia



Lapatinib, HPLC, fluorimetry, validation, simultaneous determination, pharmacokinetics


Lapatinib is a small molecule, a heterocyclic quinazoline derivative. The drug is used for targeted therapy of patients with breast cancer, in which there is overexpression of the human epidermal growth factor receptors (HER/ErbB). This review is devoted to studying modern instrumental methods of qualitative and quantitative analysis of lapatinib, which can be used both for quality control and standardization (of bulk pharmaceuticals and dosage forms) and pharmacokinetics studies of a drug. Reverse-phase high-performance liquid chromatography (RP-HPLC) is mainly used to identify lapatinib in tablets. Depending on the purpose of the study, various detectors are used (ultraviolet or diode-matrix detector), which makes it possible to determine not only the native compound but also the products of its degradation. Definition of lapatinib in the presence of degraded products is necessary for forced degradation studies to determine drug stability. When a drug is being developed, it is important to define and understand its pharmacokinetics. For such studies, high-performance liquid chromatography (HPLC) coupled with the mass selective detector is often used. It allows determining lapatinib in biological fluids. However, these methods are not applicable for identifying the drug directly in dosage forms and require further development and validation.


Download data is not yet available.


Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Erratum in: CA Cancer J Clin. 2020 Jul;70(4):313. PMID: 30207593.

Xuhong JC, Qi XW, Zhang Y, Jiang J. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am J Cancer Res. 2019 Oct 1;9(10):2103-19. PMID: 31720077; PMCID: PMC6834479.

Dange VN, Shid SJ, Magdum CS, Mohite SK. A Review on Breast cancer: An Overview. Asian J Pharm Res [Internet]. 2017 [cited 2021 Sep 30];7(1):[about 3 p.]. Available from: doi: 10.5958/2231-5691.2017.00008.9

Oh DY, Bang YJ. HER2-targeted therapies - a role beyond breast cancer. Nat Rev Clin Oncol. 2020 Jan;17(1):33-48. doi: 10.1038/s41571-019-0268-3. Epub 2019 Sep 23. PMID: 31548601.

O'Sullivan CC, Davarpanah NN, Abraham J, Bates SE. Current challenges in the management of breast cancer brain metastases. Semin Oncol. 2017 Apr;44(2):85-100. doi: 10.1053/j.seminoncol.2017.06.006. Epub 2017 Jul 8. PMID: 28923217.

Holla SN, Nayak V, Laxminarayan Bairy K, Tripathy A, Shreedhar Holla N. Her-2 gene, receptors and drug target: A systematic review. Int J Pharm Pharm Sci [Internet]. 2016 Jan [cited 2021 Sep 30];8(4): [about 6 p.]. Available from:

European Medicines Agency. Assessment report for Tyverb; 2008. 58 p.

Gril B, Palmieri D, Bronder JL, Herring JM, Vega-Valle E, Feigenbaum L, Liewehr DJ, Steinberg SM, Merino MJ, Rubin SD, Steeg PS. Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J Natl Cancer Inst. 2008 Aug 6;100(15):1092-103. doi: 10.1093/jnci/djn216. Epub 2008 Jul 29. PMID: 18664652; PMCID: PMC2575427.

Konecny GE, Pegram MD, Venkatesan N, Finn R, Yang G, Rahmeh M, Untch M, Rusnak DW, Spehar G, Mullin RJ, Keith BR, Gilmer TM, Berger M, Podratz KC, Slamon DJ. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 2006 Feb 1;66(3):1630-9. doi: 10.1158/0008-5472.CAN-05-1182. PMID: 16452222.

Shrivastava R, Trivedi S, Singh PK, Asif M, Chourasia MK, Khanna A, Bhadauria S. Design and development of PEGylated liposomal formulation of HER2 blocker Lapatinib for enhanced anticancer activity and diminished cardiotoxicity. Biochem Biophys Res Commun. 2018 Sep 5;503(2):677-683. doi: 10.1016/j.bbrc.2018.06.060. Epub 2018 Jun 25. PMID: 29908185.

Yang Z, Shao D, Zhou G. Dissolution behavior and thermodynamic properties of lapatinib ditosylate in pure and mixed organic solvents from T = (283.15–323.15) K. Fluid Phase Equilib. 2019 May;486:91-7.

Open database:

The Human Metabolome Database (HMDB) [Internet]. Showing metabocard for Lapatinib (HMDB0015388). c2012 - [cited 2020 Nov 10]. Available from:

Morikawa A, Peereboom DM, Thorsheim HR, Samala R, Balyan R, Murphy CG, Lockman PR, Simmons A, Weil RJ, Tabar V, Steeg PS, Smith QR, Seidman AD. Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study. Neuro Oncol. 2015 Feb;17(2):289-95. doi: 10.1093/neuonc/nou141. Epub 2014 Jul 11. Erratum in: Neuro Oncol. 2015 Oct;17(10):1423. PMID: 25015089; PMCID: PMC4288517.

Toth G, Janoska A, Völgyi G, Szabo SI, Orgovan G, Mirzahosseini A, Noszal B. Physicochemical Characterization and Cyclodextrin Complexation of the Anticancer Drug Lapatinib. J Chem. 2017 Mar;2017:1-9.

Stuurman FE, Nuijen B, Beijnen JH, Schellens JH. Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement. Clin Pharmacokinet. 2013 Jun;52(6):399-414. doi: 10.1007/s40262-013-0040-2. PMID: 23420518.

Wan X, Zheng X, Pang X, Zhang Z, Zhang Q. Incorporation of lapatinib into human serum albumin nanoparticles with enhanced anti-tumor effects in HER2-positive breast cancer. Colloids Surf B Biointerfaces. 2015 Dec 1;136:817-27. doi: 10.1016/j.colsurfb.2015.10.018. Epub 2015 Oct 23. PMID: 26539808.

Bouchet S, Chauzit E, Ducint D, Castaing N, Canal-Raffin M, Moore N, Titier K, Molimard M. Simultaneous determination of nine tyrosine kinase inhibitors by 96-well solid-phase extraction and ultra performance LC/MS-MS. Clin Chim Acta. 2011 May 12;412(11-12):1060-7. doi: 10.1016/j.cca.2011.02.023. Epub 2011 Feb 21. PMID: 21345336.

Ni MW, Zhou J, Li H, Chen W, Mou HZ, Zheng ZG. Simultaneous determination of six tyrosine kinase inhibitors in human plasma using HPLC-Q-Orbitrap mass spectrometry. Bioanalysis. 2017 Jun;9(12):925-935. doi: 10.4155/bio-2017-0031. Epub 2017 Jun 15. PMID: 28617069.

Merienne C, Rousset M, Ducint D, Castaing N, Titier K, Molimard M, Bouchet S. High throughput routine determination of 17 tyrosine kinase inhibitors by LC-MS/MS. J Pharm Biomed Anal. 2018 Feb 20;150:112-120. doi: 10.1016/j.jpba.2017.11.060. Epub 2017 Nov 28. PMID: 29220734.

Zardavas D, Fouad TM, Piccart M. Optimal adjuvant treatment for patients with HER2-positive breast cancer in 2015. Breast. 2015 Nov;24 Suppl 2:S143-8. doi: 10.1016/j.breast.2015.07.034. Epub 2015 Aug 5. PMID: 26255196.

Inoue K, Kuroi K, Shimizu S, Rai Y, Aogi K, Masuda N, Nakayama T, Iwata H, Nishimura Y, Armour A, Sasaki Y. Safety, pharmacokinetics and efficacy findings in an open-label, single-arm study of weekly paclitaxel plus lapatinib as first-line therapy for Japanese women with HER2-positive metastatic breast cancer. Int J Clin Oncol. 2015 Dec;20(6):1102-9. doi: 10.1007/s10147-015-0832-5. Epub 2015 May 13. PMID: 25967286; PMCID: PMC4666271.

Schrader C, Boehm A, Reiche A, Dietz A, Mozet C, Wichmann G. Combined effects of lapatinib and cisplatin on colony formation of head and neck squamous cell carcinoma. Anticancer Res. 2012 Aug;32(8):3191-9. Erratum in: Anticancer Res. 2012 Sep;32(9):4169. Diet, Andreas [corrected to Dietz, Andreas]. PMID: 22843892.

McDermott M, Eustace AJ, Busschots S, Breen L, Crown J, Clynes M, O'Donovan N, Stordal B. In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies. Front Oncol. 2014 Mar 6;4:40. doi: 10.3389/fonc.2014.00040. PMID: 24639951; PMCID: PMC3944788.

Umehara H, Maekawa Y, Koizumi F, Shimizu M, Ota T, Fouad TM, Willey J, Kaito H, Shiraishi N, Nakashima D, Akinaga S, Ueno NT. Preclinical and phase I clinical studies of KW-2450, a dual IGF-1R/IR tyrosine kinase inhibitor, in combination with lapatinib and letrozole. Ther Adv Med Oncol. 2018 Jul 30;10:1758835918786858. doi: 10.1177/1758835918786858. PMID: 30083253; PMCID: PMC6066809.

Cizkova M, Bouchalova K, Friedecky D, Polynkova A, Janostakova A, Radova L, Cwiertka K, Trojanec R, Zezulova M, Zlevorova M, Hajduch M, Melichar B. High lapatinib plasma levels in breast cancer patients: risk or benefit? Tumori. 2012 Jan-Feb;98(1):162-5. doi: 10.1700/1053.11516. PMID: 22495718.

Kumar KK, Nagoji KE, Nadh RV. A Validated RP-HPLC Method for the Estimation of Lapatinib in Tablet Dosage form using Gemcitabine Hydrochloride as an Internal Standard. Indian J Pharm Sci. 2012 Nov;74(6):580-3. doi: 10.4103/0250-474X.110621. PMID: 23798787; PMCID: PMC3687931.

Ivaturi R, Sastry MT, Satyaveni S. Development and validation of stability indicating HPLC method for the determination of lapatinib impurities in bulk and finished formulations. Int J Pharm Sci Res. 2017 Jul;8:3081-91.

Saadat E, Dehghan Kelishady P, Ravar F, Kobarfard F, Dorkoosh FA. Development and Validation of Rapid Stability-Indicating RP-HPLC-DAD Method for the Quantification of Lapatinib and Mass Spectrometry Analysis of Degraded Products. J Chromatogr Sci. 2015 Jul;53(6):932-9. doi: 10.1093/chromsci/bmu150. Epub 2014 Dec 9. PMID: 25491314.

Götze L, Hegele A, Metzelder SK, Renz H, Nockher WA. Development and clinical application of a LC-MS/MS method for simultaneous determination of various tyrosine kinase inhibitors in human plasma. Clin Chim Acta. 2012 Jan 18;413(1-2):143-9. doi: 10.1016/j.cca.2011.09.012. Epub 2011 Sep 16. PMID: 21945732.

Couchman L, Birch M, Ireland R, Corrigan A, Wickramasinghe S, Josephs D, Spicer J, Flanagan RJ. An automated method for the measurement of a range of tyrosine kinase inhibitors in human plasma or serum using turbulent flow liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2012 Jun;403(6):1685-95. doi: 10.1007/s00216-012-5970-2. Epub 2012 Apr 14. PMID: 22526649.

Guo XF, Li SS, Zhu XF, Dou QH, Liu D. Lapatinib in combination with paclitaxel plays synergistic antitumor effects on esophageal squamous cancer. Cancer Chemother Pharmacol. 2018 Sep;82(3):383-394. doi: 10.1007/s00280-018-3627-3. Epub 2018 Jun 16. PMID: 29909520.

Patel TA, Ensor JE, Creamer SL, Boone T, Rodriguez AA, Niravath PA, Darcourt JG, Meisel JL, Li X, Zhao J, Kuhn JG, Rosato RR, Qian W, Belcheva A, Schwartz MR, Kaklamani VG, Chang JC. A randomized, controlled phase II trial of neoadjuvant ado-trastuzumab emtansine, lapatinib, and nab-paclitaxel versus trastuzumab, pertuzumab, and paclitaxel in HER2-positive breast cancer (TEAL study). Breast Cancer Res. 2019 Sep 2;21(1):100. doi: 10.1186/s13058-019-1186-0. PMID: 31477168; PMCID: PMC6720931.

Saadat E, Ravar F, Dehghankelishadi P, Dorkoosh FA. Development and Validation of a Rapid RP-HPLC-DAD Analysis Method for the Simultaneous Quantitation of Paclitaxel and Lapatinib in a Polymeric Micelle Formulation. Sci Pharm. 2016 Apr-Jun;84(2):333-45. doi: 10.3797/scipharm.1507-03. Epub 2015 Dec 29. PMID: 27222608; PMCID: PMC4871185.

Biswal S, Mondal S. Analytical Method Validation Report for Assay of Lapatinib by UPLC. Pharmaceutical Methods. 2019 Apr;10(1):9-14.

Darwish HW, Bakheit AH, Al-Shakliah NS, Rahman A, Darwish IA. Experimental and computational evaluation of kolliphor RH 40 as a new fluorescence enhancer in development of a micellar-based spectrofluorimetric method for determination of lapatinib in tablets and urine. PloS one. 2020 Dec 3;15(12):e0239918. doi: 10.1371/journal.pone.0239918. PMID: 33270656; PMCID: PMC7714224.

Caprioli RM, Farmer TB, Gile J. Molecular Imaging of Biological Samples: Localization of Peptides and Proteins Using MALDI-TOF MS. Anal Chem. 1997 Dec 1;69(23):4751-60. doi: 10.1021/ac970888i. PMID: 9406525.

Andriamanana I, Gana I, Duretz B, Hulin A. Simultaneous analysis of anticancer agents bortezomib, imatinib, nilotinib, dasatinib, erlotinib, lapatinib, sorafenib, sunitinib and vandetanib in human plasma using LC/MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2013 May 1;926:83-91. doi: 10.1016/j.jchromb.2013.01.037. Epub 2013 Mar 16. PMID: 23562906.

Lankheet NAG, Hillebrand MJX, Rosing H, Schellens JHM, Beijnen JH, Huitema ADR. Method development and validation for the quantification of dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, sorafenib and sunitinib in human plasma by liquid chromatography coupled with tandem mass spectrometry. Biomed Chromatogr. 2013 Apr;27(4):466-76. doi: 10.1002/bmc.2814. Epub 2012 Sep 17. PMID: 22987603.

Micova K, Friedecky D, Faber E, Adam T. Isotope dilution direct injection mass spectrometry method for determination of four tyrosine kinase inhibitors in human plasma. Talanta. 2012 May 15;93:307-13. doi: 10.1016/j.talanta.2012.02.038. Epub 2012 Feb 22. PMID: 22483915.

Musijowski J, Filist M, Rudzki PJ. Sensitive single quadrupole LC/MS method for determination of lapatinib in human plasma. Acta Pol Pharm. 2014 Nov-Dec;71(6):1029-36. PMID: 25745775.

Ganetsky M, Böhlke M, Pereira L, Williams D, LeDuc B, Guatam S, Salhanick SD. Effect of excipients on acetaminophen metabolism and its implications for prevention of liver injury. J Clin Pharmacol. 2013 Apr;53(4):413-20. doi: 10.1002/jcph.24. Epub 2013 Feb 22. PMID: 23436315; PMCID: PMC4383763.

Lancaster EM, Hiatt JR, Zarrinpar A. Acetaminophen hepatotoxicity: an updated review. Arch Toxicol. 2015 Feb;89(2):193-9. doi: 10.1007/s00204-014-1432-2. Epub 2014 Dec 24. PMID: 25537186.

Karbownik A, Szalek E, Sobanska K, Grabowski T, Klupczynska A, Plewa S, Wolc A, Magiera M, Porazka J, Kokot ZJ, Grzeskowiak E. The concomitant use of lapatinib and paracetamol - the risk of interaction. Invest New Drugs. 2018 Oct;36(5):819-827. doi: 10.1007/s10637-018-0573-1. Epub 2018 Feb 20. PMID: 29464465; PMCID: PMC6153549.

Polli JW, Humphreys JE, Harmon KA, Castellino S, OiMara MJ, Olson KL, John-Williams LSt, Koch KM, Serabjit-Singh CJ. The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metab Dispos. 2008 Apr;36(4):695-701. doi: 10.1124/dmd.107.018374. Epub 2008 Jan 23. PMID: 18216274.

Karbownik A, Porazka J, Luczak A, Tezyk A, Grabowski T, Wolc A, Grzeskowiak E, Szalek E. Pharmacokinetic interaction after oral coadministration of clarithromycin and the tyrosine kinase inhibitor lapatinib in rats. Acta Pol Pharm. 2019 Aug; 76(4):645-651. DOI: 10.32383/appdr/104370

Langer O, Muller M. Methods to assess tissue-specific distribution and metabolism of drugs. Curr Drug Metab. 2004 Dec;5(6):463-81. doi: 10.2174/1389200043335379. PMID: 15578942.

Jespersen S, Niessen WMA, Tjaden UR, van der Greef J, Litborn E, Lindberg U, Roeraade J, Hillenkamp F. Attomole detection of proteins by matrix-assisted laser desorption/ionization mass spectrometry with the use of picolitre vials. Rapid Commun Mass Spectrom. 1994;8:581–4.

Barry JA, Groseclose MR, Robichaud G, Castellino S, Muddiman DC. Assessing drug and metabolite detection in liver tissue by UV-MALDI and IR-MALDESI mass spectrometry imaging coupled to FT-ICR MS. Int J Mass Spectrom. 2015 Feb 1;377:448-155. doi: 10.1016/j.ijms.2014.05.012. PMID: 26056514; PMCID: PMC4456684.

Khan H. Analytical Method Development in Pharmaceutical Research: Steps involved in HPLC Method Development. Asian J Pharm Res. 2017;7(3):203-7. doi: 10.5958/2231-5691.2017.00031.4. Available on:



How to Cite




Review Article(s)