COMPARISON OF CHITOSAN FROM CRAB SHELL WASTE AND SHRIMP SHELL WASTE AS NATURAL ADSORBENT AGAINST HEAVY METALS AND DYES

Authors

  • NERDY NERDY Department of Pharmacy, Faculty of Pharmacy, Institut Kesehatan Deli Husada Deli Tua, Deli Tua Timur, Deli Tua, Deli Serdang, Sumatera Utara, Indonesia, 20355 https://orcid.org/0000-0002-1993-4415
  • PUJI LESTARI Department of Pharmacy, Faculty of Pharmacy, Institut Kesehatan Deli Husada Deli Tua, Deli Tua Timur, Deli Tua, Deli Serdang, Sumatera Utara, Indonesia, 20355
  • DELISMA SIMORANGKIR Department of Pharmacy, Faculty of Pharmacy, Institut Kesehatan Deli Husada Deli Tua, Deli Tua Timur, Deli Tua, Deli Serdang, Sumatera Utara, Indonesia, 20355
  • VONNA AULIANSHAH Department of Pharmacy, Politeknik Kesehatan Kemenkes Nanggroe Aceh Darussalam, Lampeuneurut Gampong, Darul Imarah, Aceh Besar, Aceh, Indonesia, 23352
  • FAISAL YUSUF Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Arjuna, Pintubosi, Laguboti, Toba Samosir, Sumatera Utara, Indonesia, 22381
  • TEDY KURNIAWAN BAKRI Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Syiah Kuala, Banda Aceh, Aceh, Indonesia, 23111 https://orcid.org/0000-0002-3861-8338

DOI:

https://doi.org/10.22159/ijap.2022v14i2.43560

Keywords:

Chitosan, Crab, Shrimp, Adsorbent, Heavy Metals, Dye

Abstract

Objective: Crustacean shell waste is not currently used to its full potential. Most waste from crustaceans used in food pollutes the environment. Widely found in crab shell waste and shrimp shell waste, chitosan is a modification of chitin compounds. This study aims to utilize crustacean shell waste (crab shell waste and shrimp shell waste) as natural adsorbent against heavy metals and dyes in the form of chitosan.

Methods: This study includes the steps of extracting chitosan from crab shell waste and shrimp shell waste, followed by adsorption capacity tests against heavy metals (mercury and arsenic) and dyes (tartrazine and amaranth).

Results: Chitosan sourced from both crab shell waste and shrimp shell waste met the physical and chemical characteristic requirements, and the yield was 28.19% and 18.33%, respectively. The adsorption capacity against heavy metals and dyes from crab shell waste chitosan ranged from 43.4% to 55.6% and the shrimp shell waste chitosan ranged from 50.8% to 60.2%.

Conclusion: Crustacean shell waste can be processed into chitosan, which is valuable and can be used as a natural adsorbent against heavy metals and dyes for waste water treatment in several industrial sectors.

Downloads

Download data is not yet available.

References

Azra MN, Okomoda VT, Tabatabaei M, Hassan M, Ikhwanuddin M. The Contributions of Shellfish Aquaculture to Global Food Security: Assessing Its Characteristics From a Future Food Perspective. Front Mar Sci. 2021;8(4):654897. DOI: 10.3389/fmars.2021.654897

Santos VP, Marques NSS, Maia PCSV, de Lima MAB, de Oliveira Franco L, de Campos-Takaki GM. Seafood Waste as Attractive Source of Chitin and Chitosan Production and Their Applications. Int J Mol Sci. 2020;21(6):4290. DOI: 10.3390/ijms21124290

Younes I, Rinaudo M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar Drugs. 2015;13(3):1133-74. DOI: 10.3390/md13031133

Li B, Elango J, Wu W. Recent Advancement of Molecular Structure and Biomaterial Function of Chitosan from Marine Organisms for Pharmaceutical and Nutraceutical Application. Appl Sci. 2020;10(14):4719. DOI: 10.3390/app10144719

Ferronato N, Torretta V. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int J Environ Res Public Health. 2019;16(6):1060. DOI: 10.3390/ijerph16061060

Ayilara MS, Olanrewaju OS, Babalola OO, Odeyemi O. Waste Management through Composting: Challenges and Potentials. Sustainability. 2020;12(5):4456. DOI: 10.3390/su12114456

Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and Health Impacts of Air Pollution: A Review. Front Public Health. 2020;8(2):14. DOI: 10.3389/fpubh.2020.00014

Ali H, Khan E, Ilahi I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J Chem. 2019;2019(3):6730305. DOI: 10.1155/2019/6730305.

Ismail M, Akhtar K, Khan MI, Kamal T, Khan MA, Asiri AM, Seo J, Khan SB. Pollution, Toxicity and Carcinogenicity of Organic Dyes and their Catalytic Bio-Remediation. Curr Pharm Des. 2019;25(34):3653-3671. DOI: 10.2174/1381612825666191021142026

Fahimirad S, Fahimirad Z, Sillanpää M. Efficient Removal of Water Bacteria and Viruses Using Electrospun Nanofibers. Sci Total Environ. 2021;751(1):141673. DOI: 10.1016/j.scitotenv.2020.141673

Tan YN, Lee PP, Chen WN. Microbial Extraction of Chitin from Seafood Waste Using Sugars Derived from Fruit Waste-Stream. AMB Expr. 2020;10(1):17. DOI: 10.1186/s13568-020-0954-7

Lukum A, Paramata Y, Botutihe DN, Akume J, Sukamto K, Paramata AR. Development of Bioadsorbent Chitosan from Shrimp Shell Waste to Mercury Absorption Efficiency. IOP Conf Series: Earth Environ. Sci. 2020;589(1):012018. DOI: 10.1088/1755-1315/589/1/012018

Sowmya SR, Madhu GM, Sankannavar Ravi, Yerragolla Shrikanth. Adsorption Using Chitosan and Nano Zerovalent Iron Composite Material for Sustainable Water Treatment. Mater Res Express. 2021;8(2):024001. DOI: 10.1088/2053-1591/abdb4d.

Yadav M, Goswami P, Paritosh K, Kumar M, Pareek N, Vivekanand V. Seafood Waste: A Source for Preparation of Commercially Employable Chitin/Chitosan Materials. Bioresour Bioprocess. 2019;6(2):8. DOI: 10.1186/s40643-019-0243-y

Abidin NAZ, Kormin F, Abidin NAZ, Anuar NAFM, Bakar MFA. The Potential of Insects as Alternative Sources of Chitin: An Overview on the Chemical Method of Extraction from Various Sources. Int J Mol Sci. 2020;21(7):4978. DOI: 10.3390/ijms21144978

Alabaraoye E, Achilonu M, Hester R. Biopolymer (Chitin) from Various Marine Seashell Wastes: Isolation and Characterization. J Polym Environ. 2018;26(10):2207-18. DOI: 10.1007/s10924-017-1118-y

Zhao D, Huang WC, Guo N, Zhang S, Xue C, Mao X. Two-Step Separation of Chitin from Shrimp Shells Using Citric Acid and Deep Eutectic Solvents with the Assistance of Microwave. Polymers. 2019;11(3):409. DOI:10.3390/polym11030409

Kaczmarek MB, Struszczyk-Swita K, Li X, Szczesna-Antczak M, Daroch M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front Bioeng Biotechnol. 2019;7(9):243. DOI: 10.3389/fbioe.2019.00243

Joseph SM, Krishnamoorthy S, Paranthaman R, Moses JA, Anandharamakrishnan C. A Review on Source Specific Chemistry, Functionality, and Applications of Chitin and Chitosan. Carbohydr Polym Technol Appl. 2021;2(1):100036. DOI: 10.1016/j.carpta.2021.100036

Imtihani HN, Permatasari SN, Thalib FA. Solid Dispersion Characteristics of Whiteleg Shrimp (Litopenaeus vannamei) Extracted Chitosan with HPMC and PVP K-30 as Anti-cholesterol Agents. Res J Pharm Technol. 2021;14(7):3559-3565. DOI: 10.52711/0974-360X.2021.00616

Queiroz MF, Melo KRT, Sabry DA, Sassaki GL, Rocha HAO. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation?. Mar Drugs. 2015;13(12):141-158. DOI: 10.3390/md13010141.

Salami A, Vilppo T, Pitkänen S, Weisell J, Raninen K, Vepsäläinen J, Lappalainen R. Cost Effective FTIR and 1H NMR Spectrometry Used to Screen Valuable Molecules Extracted from Selected West African Trees by a Sustainable Biochar Process. Sci Afr. 2020;8(7):e00315. DOI: 10.1016/j.sciaf.2020.e00315

Shit SC, Shah PM. Edible Polymers: Challenges and Opportunities. J Polym. 2014;2014(5):427259. DOI: 10.1155/2014/427259

Hahn T, Tafi E, Paul A, Salvia R, Falabella P, Zibek S. Current State of Chitin Purification and Chitosan Production from Insects. J Chem Technol Biotechnol. 2020;95(7):2775–95. DOI: 10.1002/jctb.6533

da Silva Alves DC, Healy B, de Almeida Pinto LA, Cadaval TRSA, Breslin CB. Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules. 2021;26(3):594. DOI: 10.3390/molecules26030594

Pestov A, Bratskaya S. Chitosan and Its Derivatives as Highly Efficient Polymer Ligands. Molecules 2016;21(3):330. DOI:10.3390/molecules21030330

Srivatsav P, Bhargav BS, Shanmugasundaram V, Arun J, Gopinath KP, Bhatnagar A. Biochar as an Eco-Friendly and Economical Adsorbent for the Removal of Colorants (Dyes) from Aqueous Environment: A Review. Water. 2020;12(12):3561. DOI:10.3390/w12123561

Chan K, Morikawa K, Shibata N, Zinchenko A. Adsorptive Removal of Heavy Metal Ions, Organic Dyes, and Pharmaceuticals by DNA–Chitosan Hydrogels. Gels. 2021;7(3):112. DOI:10.3390/gels7030112.

Published

23-12-2021

How to Cite

NERDY, N., LESTARI, P., SIMORANGKIR, D., AULIANSHAH, V., YUSUF, F., & BAKRI, T. K. (2021). COMPARISON OF CHITOSAN FROM CRAB SHELL WASTE AND SHRIMP SHELL WASTE AS NATURAL ADSORBENT AGAINST HEAVY METALS AND DYES. International Journal of Applied Pharmaceutics, 14(2). https://doi.org/10.22159/ijap.2022v14i2.43560

Issue

Section

Original Article(s)