STABILITY AND ANTIBACTERIAL ACTIVITY TEST OF NANOSILVER BIOSYNTHETIC HYDROGEL

Authors

  • DIAN EKA ERMAWATI Department of Pharmacy, Pharmacy Diploma Study Program, Vocational School, Sebelas Maret University, Surakarta, Indonesia https://orcid.org/0000-0002-8633-9261
  • ADI YUGATAMA Department of Pharmacy, Bachelor of Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
  • BERLIANA RIZKA RAMADHANI Department of Pharmacy, Bachelor of Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
  • INTAN PERTIWI Department of Pharmacy, Pharmacy Diploma Study Program, Vocational School, Sebelas Maret University, Surakarta, Indonesia https://orcid.org/0000-0001-9374-7856
  • ANISWATUN ROSIKHOH Department of Pharmacy, Pharmacy Diploma Study Program, Vocational School, Sebelas Maret University, Surakarta, Indonesia
  • SAFIRA RAHMA NOVACHIRIA Department of Pharmacy, Bachelor of Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia

DOI:

https://doi.org/10.22159/ijap.2022v14i2.43584

Keywords:

Antibacterial, cycling test, turmeric juice, nanosilver, hydrogel

Abstract

Objective: This study aims to formulate nanosliver (AgNPs) biosynthetic hydrogel for topical antibacterial treatment, and its stability and antibacterial activity.

Methods: The mixture (Silver nitrate solution and Turmeric juice) was stirred at room temperature for 24 hours, afterward, it was analyzed using UV-VIS spectrophotometry, particle size analysis, and TEM. The carbopol 940 was selected as a gelling agent with an AgNPs concentration of 5%, 10%, 20%, and 30%. Furthermore, the gel preparation was tested for stability using the cycling test method, and antibacterial activity. The antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa.

Results: The nanosilver biosynthetic has a yellow-brown color with the maximum wavelength peak at 433 nm, and a particle size of 157.4-166.7 nm. TEM analysis showed that AgNPs have a round shape, while the antibacterial activity of hydrogel preparations was moderately inhibited. Furthermore, the hydrogel was evaluated for pH, viscosity, dispersibility, and antibacterial activity before-after the cycling test.  Formula with 30% AgNPs is chosen formula with pH value of 5.87±0.65; viscosity of 4833.3±2.82 c.Ps; and dispersibility of 5.50±0.15 after cycling test.

Conclusion: The high concentration of AgNPs will increase the viscosity, pH, and dipersibility. Formula with 30% AgNPs has the highest antibacterial activity. Furthermore, all hydrogel preparations meet the requirements of Indonesian Standard Product (SNI) No. 06-2588-1992 for good gel stability before and after the cycling test.

Downloads

Download data is not yet available.

References

El Khoury, Elsy, Mohamad A, Zeina G, Kassaify, and Digambara, Patra. Green Synthesis of Curcumin Conjugated Nanosilver for the Applications in Nucleic Acid Sensing and Anti-Bacterial Activity. Colloids and Surfaces B: Biointerfaces. 2015;127: 274–80.

Ahmed S, Mudasir A, Babu LS, Saiqa I. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J.of Advanced Research. 2016;7(1): 17–28.

Shankar SS, Akhilesh R, Absar A and Murali S. Rapid Synthesis of Au, Ag, and Bimetallic Au Core-Ag Shell Nanoparticles Using Neem (Azadirachta indica) Leaf Broth. J.of Colloid and Interface Science. 2004;275(2):496–502.

Shameli K. Green Biosynthesis of Silver Nanoparticles Using Curcuma Longa Tuber Powder. Int.J. of Nanomedicine. 2012;7:5603–10.

Kurian M, Varghese B, Athira TS and Krishna S. Novel and Efficient Synthesis of Silver Nanoparticles using Curcuma Longa and Zingiber officinale Rhizome Extracts. Int. J. Nanosci. Nanotechnol. 2016;12(3):175–81.

Alsammarraie FK. Green Synthesis of Silver Nanoparticles Using Turmeric Extracts and Investigation of Their Antibacterial Activities. Colloids and Surfaces B: Biointerfaces. 2018;171:398–405.

Williamson DA, Carter GP, Howden BP. Current and Emerging Topical Antibacterials and Antiseptics: Agents, Action, and Resistance Patterns. Clinical microbiology reviews. 2017;30(3):827-860.

Humaida R. Strategy to Handle Resistance of Antibiotics. Jurnal Majority. 2014;3(7):113-120.

Goskonda SR. Handbook of Pharmaceutical Excipients, Sixth Edition, London: Pharmaceutical Press and American Pharmacists Association 2009.

Budama-Kilinc Y, Cakir-Koc R, Zorlu T, Ozdemir B, Karavelioglu Z, Egil AC, Kecel-Gunduz S. Assessment of Nano-toxicity and Safety Profiles of Silver Nanoparticles, Silver Nanoparticles-fabrication, Characterization and Applications. Intechopen, London 2018.

Seltenrich N. Nanosilver: Weighing the Risks and Benefits. Environ Health Perspect. 2013;121(7):220–225.

Fujihastuti T, Sughartini N. Sifat Fisik dan Daya Iritasi Gel Ekstrak Etanol Herba Pegagan (Centella asiatica L.) dengan Variasi Jenis Gelling Agent. Jurnal Farmasi Indonesia. 2015;12(1):11-20.

Melani D, Purwanti T, Soeratri W. Korelasi Kadar Propilenglikol dalam Basis dan Pelepasan Dietilammonium Diklofenak dari Basis Gel 78 Carbopol ETD 2020. Bagian Farmasetika Fakultas Farmasi. Universitas Airlangga. Surabaya.

Prathna TC, Chandrasekaran N, Ashok M, Raichur and Amitava M. Biomimetic Synthesis of Silver Nanoparticles by Citrus limon (Lemon) Aqueous Extract and Theoretical Prediction of Particle Size. Colloids and Surfaces B: Biointerfaces. 2011;82(1):152–59.

Sutanti F, Silvia D, Putri MA, Fabiani VA. Pengaruh Konsentrasi AgNO3 pada Sintesis Nanopartikel Perak Menggunakan Bioreduktor Ekstrak Pucuk Idat (Cratoxylum glaucum Korth). Proceedings Of National Colloquium Research and Community Service. 2018;2:1-4.

Martin AJ, Swarbrick, Cammarata A. Farmasi Fisik. UI Press, Jakarta 2012.

Muadifah A, Amini HW, Putri AE, Latifah N. Aktivitas Antibakteri Ekstrak Rimpang Kunyit (Curcuma Domestica Val) terhadap Bakteri Staphylococcus aureus. Jurnal Sain Health. 2019;3(1):45-54.

Fahimirad S, Fatemeh A and Mansour G. Synthesis and Therapeutic Potential of Silver Nanomaterials Derived from Plant Extracts. Ecotoxicology and Environmental Safety 2019; 168(October 2018): 260–78.

Haryani Y. Pemanfaatan Ekstrak Air Rimpang Jahe Merah (Zingiber officinale Linn.Var. Rubrum) pada Biosintesis Sederhana Nanopartikel Perak. Chimica et Natura Acta. 2016;4(3):151

Rahayu, S., Nunung, K., and Vina, A. Ekstraksi dan Identifikasi Senyawa Flavonoid dari Limbah Kulit Bawang Merah Sebagai Antioksidan Alami. Al-Kimiya. 2015;2(1):1–8.

Campbell CSJ, Contreras-Rojas LR, Delgado-Charro MB, Guy RH. Objective assessment of nanoparticle disposition in mammalian skin after topical exposure. J. of Controlled Release. 2012;162(1): 201–207.

Nidhin M, Indumathy R, Sreeram KJ, Nair BU. Synthesis of Iron Oxide Nanoparticles of Narrow Size Distribution on Polysaccharide Templates. Bulletin of Material Science. 2008;31(1):93–96.

Dominguez AV, Ayerbe Algaba R, Miró Canturri A, Rodríguez Villodres Á, Smani Y. Antibacterial activity of Colloidal Silver Against Gram-negative and Gram-positive Bacteria. Antibiotics. 2020;9(36):1-10.

Patel J, Patel B, Banwait H, Parmar K, Patel M. Formulation and Evaluation of Topical Aceclofenac Gel using Different Gelling Agent. Int J Drug Dev Res. 2011;3(1):156-164.

Saraung V, Yamlean PV, Citraningtyas G. Pengaruh Variasi Babis Karbopol Dan Hpmc Pada Formulasi Gel Ekstrak Etanol Daun Tapak Kuda (Ipomoea Pes-Caprae (L.) R. Br. dan Uji Aktivitas Antibakteri terhadap Staphylococcus aureus. PHARMACON. 2018;7(3):220-229.

Annisa R, Suryadinata A, Nashichuddin A, Mutiah R, Fauziyah B. Development of an Antimicrobial Gel Formulation for Topical Delivery using Silver Nanoparticle. Indian J. of Novel Drug Delivery. 2019;11(1):13-19.

Wahyudi T, Sugiyana D, Helmy Q. Sintesis Nanopartikel Perak dan Uji Aktivitasnya terhadap Bakteri E. coli dan S. aureus. Arena Tekstil. 2011;26(1):55-60.

Diez-Pascual AM. Antibacterial Action of Nanoparticle Loaded Nanocomposites Based on Graphene and its Derivatives: A Mini-review. Int. J. of Molecular Sciences. 2020;21(10):1-22.

Mishra M, Chauhan P. Nanosilver and its medical implications. J. Nanomed Res. 2015;2(5): 1-10.

Sirajudin A, Rahmanisa S. Nanopartikel Perak sebagai Penatalaksanaan Infeksi Saluran Kemih. MAJORITY. 2016;5(4):1-5.

Adila R, Nurmiati, Agustien A. Uji Antimikroba Curcuma spp terhadap Pertumbuhan Candida albicans, Staphylococcus aureus, dan Escherichia coli. J. Biologi Universitas Andalas. 2013;2(1),1-7.

Mursyid AM. Evaluasi Stabilitas Fisik dan Profil Difusi Sediaan Gel (Minyak Zaitun). J. Fitofarmaka Indonesia. 2017;4(1):205-211.

Wulandari W, Ermawati DE, Yugatama A. Optimization SNEDDS (Self-Nano Emulsifying Drug Delivery System) of ZnO that dispersed into Hydrogel Matrix as UV-Protective 2019 IOP Conf. Ser.: Mater. Sci. Eng. 578 012058.

Pertiwi D, Desnita R, Luliana S. Pengaruh pH Terhadap Stabilitas Alpha Arbutin dalam Gel Niosom. Majalah Farmaseutik. 2020;16(1):91-100.

Aishwarya V, Bhuvaneshwari G, Lilly GJR, Rosy V. Antibacterial Effectiveness of Prosopis Juliflora Against Aerobic and Anaerobic Bacteria. Int J of Current Pharma Res 2021. Doi: https://doi.org/10.22159/ijcpr.2020v12i6.40305

Srilaxmi C, Vasanti S. Nanotechnology for Detection of Diseases Caused by Viruses-Current Overview. Int J of Pharmacy and Pharm Sci 2021. Doi: https://doi.org/10.22159/ijpps.2021v13i4.40359.

Published

15-12-2021

How to Cite

ERMAWATI, D. E., YUGATAMA, A., RAMADHANI, B. R., PERTIWI, I., ROSIKHOH, A., & NOVACHIRIA, S. R. (2021). STABILITY AND ANTIBACTERIAL ACTIVITY TEST OF NANOSILVER BIOSYNTHETIC HYDROGEL. International Journal of Applied Pharmaceutics, 14(2). https://doi.org/10.22159/ijap.2022v14i2.43584

Issue

Section

Original Article(s)