NEEDLE FREE MONITORING OF BLOOD GLUCOSE THROUGH REVERSE IONTOPHORESIS

Authors

  • SUBHASIS CHAKRABARTY Department of Pharmaceutical Technology, School of Medical Sciences, ADAMAS University, P.O Jagannathpur Kolkata 700126
  • JOYEETA BHATTACHARYA Department of Pharmaceutical Technology, School of Medical Sciences, ADAMAS University, P.O Jagannathpur Kolkata 700126
  • ANKIT CHOWDHURY Department of Pharmaceutical Technology, School of Medical Sciences, ADAMAS University, P.O Jagannathpur Kolkata 700126
  • PARTHA ROY Department of Pharmaceutical Technology, School of Medical Sciences, ADAMAS University, P.O Jagannathpur Kolkata 700126
  • SAJAL KUMAR JHA Department of Pharmaceutical Technology, School of Medical Sciences, ADAMAS University, P.O Jagannathpur Kolkata 700126

DOI:

https://doi.org/10.22159/ijap.2022v14i4.44288

Keywords:

Keywords: - Reverse Iontophoresis, Skin, Extraction mechanism, Electro migration, Electro osmosis, Glucose monitoring, Future approach.

Abstract

The frequent blood glucose monitoring is highly critical in order to understand the progression of diabetes mellitus and to minimize the probabilities of associated complications. This focuses to the fabrication of a new device for individual blood glucose monitoring. However, this technology turned out to be painful owing to its finger stick technique, resulting in compromised patient compliance and inconsistent results. A paradigm shift from invasive to non-invasive technique to combat the above stated limitations became an attractive tool for the researchers. The evolution of reverse iontophoresis to extract the essential plasma biomarkers as well as blood glucose through the skin was the result of the extensive efforts of the researchers as a means to monitor the blood glucose levels. The technology utilises delivery of small amount of electric current through the skin to extract the target molecules. This concept has received tremendous attention in the past decade; however, the technology still needs stringent validation for a widespread implementation. Thus, in the present review, we aimed to elaborate the underlying mechanism of reverse iontophoresis technique in evaluation of blood glucose levels through skin, its unique features and its advancements towards commercialisation, the challenges faced, additional applications and the future prospects. The review also updates about the other non-invasive glucose monitoring techniques in comparison to reverse iontophoresis.

Downloads

Download data is not yet available.

References

Santi P, Guy RH. Reverse iontophoresis - parameters determining electroosmotic flow: II. Electrode chamber formulation. J Control Release. 1996; 42: 29-36.

Pikal MJ. Transport mechanisms in iontophoresis. I. A theoretical model for the effect of electroosmotic flow on flux enhancement in transdermal iontophoresis. Pharm Res. 1990; 9: 118-26.

Rao G, Guy RH, Glikfeld P, et al. Reverse Iontophoresis: non-invasive glucose monitoring in vivo in humans. Pharm Res. 1995; 12: 1869-73.

Potts RO, Tamada JA, Tierney MJ. Glucose monitoring by reverse iontophoresis. Diabetes Metab Res Rev. 2002 ; 18 : S49-S53.

Wang CY, Maibach HI. Why minimally invasive skin sampling techniques? A bright scientifi c future. Cutan Ocul Toxicol. 2011; 30 : 1-6.

Suthakaran C, Adithan C. Therapeutic drug monitoring – concepts, methodology, clinical application and limitations. Health Adm. 19 : 22-6.

Anroop B, Ghosh B, Parcha V, et al. Transdermal delivery of atenolol: effect of prodrugs and iontophoresis. Curr Drug Deliv. 2009 ; 6 : 280-90.

Glikfi eld P, Hinz RS, Guy RF. Non-invasive sampling of biological fluids by iontophoresis. Pharm Res. 1989; 11: 988–90.

Marro D, Kalia YN, Delgado-Charro MB, et al. Contributions of electromigration and electroosmosis to iontophoretic drug delivery. Pharm Res. 2001 ; 18: 1701-8.

T.P.Sun, H.L.Shieh, C.T.H.Ching, Y.D.Yao, S.H.Huang, C.M.Liu, W.H.Liu, C.Y.Chen. Carbon nanotube composites for glucose biosensor incorporated with reverse iontophoresis function for noninvasive glucose monitoring. Int.J. Nanomedicine. 2010 ; 5: 343–349.

A.E.G. Cass, G. Davis, G.D. Francis, H.A.O. Hill, W.J. Aston, J. Higgins, L.D.L. Plotkin, A.P.F. Turner Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 1984; 56: 667–6.

M.B.Delgado-Charro, R.H.Guy. Transdermal reverse iontophoresis of valproate: a non-invasive method for therapeutic drug monitoring. Pharm.Res 2003; 20: 1508-1513.

Pliquett U. Mechanistic studies of molecular transdermal transport due to skin electroporation. Adv. Drug Deliv. Rev 1999; 35: 41–60.

V.Merino, A.Lopez, D.Hochstrasser, R.H.Guy. Non-invasive sampling of phenylalanine by reverses iontophoresis. J. Control. Release. 1999; 61: 65-69.

P.Batheja, R.Thakur, B.Michniak. Transdermal iontophoresis, Expert. Opinion. Drug. Deliv. 2006; 3: 127-38.

A.F. Amos, D.J. McCarty, P. Zimmet. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet. Med. 1997;14 (12): S7–S85.

W.V. Tamborlane, R.W. Beck, B.W. Bode, B. Buckingham, H.P. Chase, R. Clemons, R. Fiallo-Scharer, L.A. Fox, L.K. Gilliam, I.B. Hirsch, E.S. Huang, C. Kollman, A.J. Kowalski, L. Laffel, J.M. Lawrence, J. Lee, N. Mauras, M. O'Grady, K.J. Ruedy, M. Tansey, E. Tsalikian, S. Weinzimer, D.M. Wilson, H. Wolpert, T. Wysocki, D.Y. Xing. Continuous glucose monitoring and intensive treatment of type 1 diabetes. New Engl. J. Med. 2008; 359 (14): 1464-U65.

J.D. Newman, A.P.F. Turner. Home blood glucose biosensors: a commercial perspective. Biosens. Bioelectron. 2005 ; 20 (12) : 2435–2453.

T.M. Gross, B.W. Bode, D. Einhorn, D.M. Kayne, J.H. Reed, N.H. White, J.J. Mastrototaro. Performance evaluation of the Mini Med continuous glucose monitoring system during patient home use. Diabetes Technol. Ther. 2000; 2 (1) : 49–56.

E. Cengiz, W.V. Tamborlane . A tale of two compartments: interstitial versus blood glucose monitoring. Diabetes Technol. Ther. 2009; 11 : S11–S16.

M. Christiansen, T. Bailey, E. Watkins, D. Liljenquist, D. Price, K. Nakamura, R. Boock, T. Peyser. A new-generation continuous glucose monitoring system: improved accuracy and reliability compared with a previous-generation system. Diabetes Technol. Ther. 2013; 15 (10) : 881–888.

M.A. Arnold. Non-invasive glucose monitoring. Curr. Opin. Biotechnol. 1996 ; 7 (1) : 46–49.

A.J. Bandodkar, I. Jeerapan, J. Wang. Wearable chemical sensors: Present challenges and future prospects. ACS Sens. 2016; 1 (5) : 464–482.

S. Xu, Y.H. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J.A. Fan, Y.W. Su, J. Su, H.G. Zhang, H.Y. Cheng, B.W. Lu, C.J. Yu, C. Chuang, T.I. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P.V. Braun, Y.G. Huang, U. Paik, J.A. Rogers. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013; 4 : 1543.

Giri, T. K. Chakrabarty, S. & Ghosh B. Transdermal reverse iontophoresis: A novel technique for therapeutic drug monitoring. Journal of Controlled Release. 2017; 246: 30–38.

C.T.S.Ching, P.Connolly. Reverse iontophoresis: A non-invasive technique for measuring blood lactate level. Sens.Actuator.B. 2008; 129: 352-358.

V.Wascotte, E.Rozet, A.Salvanterra, P.Hubert, M.Jadoul, R.H.Guy, V.Preat. Noninvasive diagnosis and monitoring of chronic kidney disease by reverse iontophoresis of urea in vivo. Eur .J. Pharm .Biopharm. 2008; 69 : 1077-1082.

J.Barre, F.Didey, F.Delion, J.P.Tillement,. Problems in therapeutic drug monitoring: free drug level monitoring. Ther. Drug Monit. 1998; 10 : 133–143.

N. Ackerman, B. Berner, J. Biegajski, Q. Chen, H. Chen, T. Conn, H. Dehal, T. Dunn, A. Ewing, S. Fermi, R. Ford, P. Jagasia, Y. Jayalakshmi, P. Joshi, B. Kersten, R. Kurnik, T. Lake, M. Lesho, J.P. Lin, D. Liu, M. Lopatin, L. Mack, H. Messenger, S. Morley, M. Oliva, N. Parris, R. Potts, J. Pudlo, M. Reidy, P. Soni, J. Tamada, M. Tierney, C. Uhegbu, P. Vijayakumar, C. Wei, S. Williams, D. Wilson, C. Wu. Controlled Drug Delivery. ACS Symposium Series. 2000; 752 : 273–282.

R. Sicree, J. Shaw, P. Zimmet. Diabetes impaired glucose tolerance—prevalence and projections, in: D. Gan (Ed.), Diabetes, 3rd edition Atlas International Diabetes Federation, Brussels. 2006 ; 15–103.

W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K.V. Chen, A. Peck, H.M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.H. Lien, G.A. Brooks, R.W. Davis, A. Javey. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature. 2016; 529 (7587) :509–514.

H. Lee, C. Song, Y.S. Hong, M.S. Kim, H.R. Cho, T. Kang, K. Shin, S.H. Choi, T. Hyeon, D.H. Kim. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv 2017; 3 : (3).

Kapil, V. Milsom, A.B. Okorie M. Maleki- Toyserkani, S. Akram,F. Rehman, F.Arghandawi,S.Pearl,V.Benjamin,N.Loukogeorgakis,S.MacAllister,R. Hobbs, A.J. Webb, A.J. Ahluwalia, A. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite- derived NO. Hypertension. 2010; 56 : 274–281.

S. Emaminejad, W. Gao, E. Wu, Z.A. Davies, H.Y.Y. Nyein, S. Challa, S.P. Ryan, H.M. Fahad, K. Chen, Z. Shahpar, S. Talebi, C. Milla, A. Javey, R.W. Davis. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl. Acad. Sci. USA. 2017; 114 (18) : 4625–4630.

H. Ota, M. Chao, Y. Gao, E. Wu, L.C. Tai, K. Chen, Y. Matsuoka, K. Iwai, H.M. Fahad, W. Gao, H.Y.Y. Nyein, L. Lin, A. Javey. 3D printed "earable" smart devices for real time detection of core body temperature. ACS Sensors. 2017; 2 : 990–997.

J. Liu, C.X. Liu, H.M. Liu, L.Y. Jiang, Q.D. Yang, X.X. Cai in. Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Bangkok, Thailand, January 2007; 16–19.

D.P. Rose, M.E. Ratterman, D.K. Griffin, L.L. Hou, N. Kelley-Loughnane, R.R. Naik, J.A. Hagen, I. Papautsky, J.C. Heikenfeld. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Bio-Med. Eng. 62 (6): 1457–1465.

M.J. Tierney, H.L. Kim, M.D. Burns, J.A. Tamada, R.O. Potts Electroanalysis of glucose in transcutaneously extracted samples. Electroanalysis. 2000 ; 12 (9) : 666–671.

J. Wang. Electrochemical glucose biosensors. Chem. Rev. 2008; 108 (2) : 814–825.

Ching, T., & Connolly, P. Simultaneous transdermal extraction of glucose and lactate from human subjects by reverse iontophoresis. International Journal of Nanomedicine. 2008; 211-223.

Islam MT, Rodríguez-Hornedo N, Ciotti S, Ackermann C. Rheological characterization of topical carbomer gels neutralized to different pH. Pharm Res 2004;21(7):1192-9.

M Sunitha Reddy, M Ranjith Kumar, K Sanjay Kumar, Anil Goli P. Santhosh Kumar. Review on needle free drug delivery systems. Int J Rev Life Sci 2011;1:76-82.

Karyakin, A.A. Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. Electroanalysis 2001; 10 : 813−819.

Jia, W. Bandodkar, A. J. Valdes- Ramírez, G. Windmiller, J. R. Yang, Z. Ramírez, J. Chan, G. Wang, J. Electrochemical tattoo biosensors for real-time non-invasive lactate monitoring in human perspiration. Anal. Chem. 2013; 85: 6553− 6560.

Bandodkar, A. J. Hung, V. W. S. Jia, W. Valdes-Ramírez, G. Windmiller, J. R. Martinez, A. G. Ramírez, J. Chan, G. Kerman, K. Wang, J. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst. 2013; 138: 123−128.

Bandodkar A. J. Wang, J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 2014; 32: 363−371.

J.A. Rogers, T. Someya, Y.G. Huang. Materials and mechanics for stretchable electronics, Science 2010. 327; (5973): 1603–1607.

J.R. Windmiller, J. Wang. Wearable electrochemical sensors and biosensors: a review. Electroanalysis. 2013; 25 (1): 29–46.

A. Ramachandran, C. Snehalatha, K. Satyavani, V. Vijay. Impaired fasting glucose and impaired glucose tolerance in urban population in India, Diabetes Med. 2003; 20: 220–224.

C. Pang, C. Lee, K.Y. Suh. Recent advances in flexible sensors for wearable and implantable devices, J. Appl. Polym. Sci. 2013; 3(130): 1429–1441.

T. Nunnold, S.R. Colberg, M.T. Herriott, C.T. Somma. Use of the non-invasive Gluo Watch biographer during exercise of varying intensity, Diabetes Technol. Ther. 2004; 6 (4) : 454–462.

E.R. Scott, B. Phipps, R. Gyory, R.V. Padmanabhan. Electrotransport system for trans-dermal delivery: a practical implementation of iontophoresis, in: D.L. Wise (Ed.), Handbook of Pharmaceutical Controlled Release Technology, Marcel Dekker. New York 2000; pp. 617–659.

H. Zhu, S.K. Li, K.D. Peck, D.J.Miller, W.I. Higuchi. Improvement on conventional constant current DC iontophoresis: a study using constant conductance AC iontophoresis, J. Control. Release 2002; 82: 249–261.

S.N. Murthy, A. Sen, S.W. Hui. Surfactant-enhanced transdermal delivery by electroporation, J. Control. Release. 2004; 98: 307–315.

I.T. Some, P. Bogaerts, R. Hanus, M. Hanocq, J. Dubois. Incorporating batch effects in the estimation of drug stability parameters using an Arrhenius model. Int. J. Pharm. 1999; 184: 165–172.

B. Zorec, S. Becker, M. Reberśek, D. Miklavćić, N. Pavśelj. Skin electroporation for transdermal drug delivery: the influence of the order of different square wave electric pulses, Int. J. Pharm. 2013; 457: 214–223.

Y. Tokudome, K. Sugibayashi. The synergic effects of various electrolytes and electroporation on the in vitro skin permeation of calcein. J. Control. Release. 2003; 92: 93–101.

G. McGarraugh. The chemistry of commercial continuous glucose monitors, Diabetes Technol. Ther. 2009; 11: S17–S24.

V. Wascotte, M.B. Delgado-Charro, E. Rozet, P. Wallemacq, P. Hubert, R.H. Guy, V. Preat. Monitoring of urea and potassium by reverse iontophoresis in vitro, Pharm. Res. 2007; 24:1131–1137.

R.R. Burnette, B. Ongpipanattakul. Characterization of perm selective properties of excised human skin during iontophoresis. J. Pharm. Sci. 1987; 76: 765–773.

Cross, S.E, Roberts M.S. Importance of dermal blood supply and epidermis on the transdermal iontophoretic delivery of monovalent cations. J. Pharm. Sci. 1995; 84(5):584-592.

A.W. Pierce. Salicylate intoxication. Postgrad. Med. 1970; 48: 243–249.

Anroop B, Ghosh B, Parcha V, Khanam J. Comparative skin permeability of metoprolol tartrate and its ester prodrugs by passive permeation and iontophoresis. Asian Journal of Pharmaceutical Sciences. 2008; 3 (2): 47-57.

A. Seig F, Jeanneret M, Fathi D, Hochstrasser S, Rudaz J.L, Veuthey, R.H. Guy, B.M. Delgado-charro. Extraction of amino acid by reverse iontophoresis in vivo. Eur. J. Pharm. Biopharm. 2009; 72 : 226–231.

P.W. Ledger. Skin biological issues in electrically enhanced transdermal delivery. Adv. Drug Deliv. Rev. 1992; 9: 289–307.

H.Y. Thong, H. Zhai, H.I. Maibach. Percutaneous penetration enhancers: an overview, Skin Pharmacol. Physiol. 2007; 20: 272–282.

M.J. Pikal. The role of electroosmotic flow in transdermal iontophoresis, Adv. Drug Deliv. Rev. 1992; 9: 201–237.

K. Mori, T. Watanabe, T. Hasegawa, H. Sato, K. Sugibayashi, T. Morimoto. Electroporation on the in vitro skin permeation of mannitol. Drug. Deliv. Syst. 1999;14: 101–106.

Chen, G. McAlister, F.A. Walker, R.L. Hemmelgarn, B.R. Campbell, N.R.C. Cardiovascular out comes in Framingham participants with diabetes: the importance of blood pressure. Hypertension. 2011; 57 : 891–897.

Smita Kolhe, Sneha Sontakke. A review on needle free drug delivery system. Int J Curr Pharm Res 2013;2:30-6.

Li, G.L. Van der Geest, R. Chanet, L. Zanten, E. V. Danhof, M.; Bouwastra, J. A. In vitro iontophoresis of R-apomorphine across human stratum corneum: Structure- transport relationship of penetration enhancement. J. Control. Release. 2002; 84(1- 2): 49-57.

Anke S, Fabienne J, Marc F, et al. Extraction of amino acids by reverse iontophoresis invitro. Eur J Pharm Biopharm. 2008; 70: 908-13.

Barrett DA, Rutter N. Transdermal delivery and the premature neonate. Crit Rev Ther Drug Carrier Syst. 1994; 11: 1–30.

Leboulanger B, Guy RH, Delgado CMB. Reverse iontophoresis for non-invasive transdermal monitoring. Physiol Meas. 2004; 25: R35–R50.

Pitzer KR, Desai S, Dunn T. Detection of hypoglycemia with the glucowatch biographer. Diabetes Care. 2001; 24: 881-5.

S. L., Wilkins, E. and Atanasov, P. Towards an implantable refillable glucose sensor based on oxygen electrode principles. Sensors & Actuators B. 1994; 17: 133-142.

Nixon S, Sieg A, Delgado-Charro MB, et al. Reverse iontophoresis of L-lactate: in vitro and in vivo studies. J Pharm Sci. 2007; 96: 3457-65.

Ribet F, Stemme G, Roxhed N. Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system. Biomed. Microdevices. 2018; 20: 101. doi: 10.1007/s10544-018-0349-6.

Barathi P, Thirumalraj B, Chen S.-M, Angaiah S. A simple and flexible enzymatic glucose biosensor using chitosan entrapped mesoporous carbon nanocomposite. Microchem. J. 2019; 147: 848–856. doi: 10.1016/j.microc.2019.03.083.

Houser TA, Sebranek JG, Bass TJ, Thacker BJ, Nilubol D, Thacker EL. Feasibility of transdermal, needleless injections for prevention of pork carcass defects. Meat Sci 2004; 68:329-32.

Maruo K, Tsurugi M, Jakusei C, Ota T, Arimoto H, Yamada Y, Tamura M, Ishii M, Ozaki Y. Non-invasive blood glucose assay using a newly developed near-infrared system. IEEEJ. Sel. Top. Quantum Electron. 2003; 9 : 322–330. doi: 10.1109/JSTQE.2003.811283.

Kasahara R, Kino S, Soyama S, Matsuura Y. Non - invasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers. Biomed. Opt. Express. 2018; 9 : 289–302. doi: 10.1364/BOE.9.000289.

McNichols R.J, Cote G.L. Optical glucose sensing in biological fluids: An overview. J. Biomed. Opt. 2000; 5: 5–16. doi: 10.1117/1.429962.

Malik B.H, Pirnstill C.W, Cote G.L. Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms. J. Biomed. Opt. 2013; 18: 17007. doi: 10.1117/1.JBO.18.1.017007.

Yang D, Afroosheh S, Lee J.O, Cho H, Kumar S, Siddique R.H, Narasimhan V, Yoon Y.Z, Zayak A.T, Choo H. Glucose Sensing Using Surface-Enhanced Raman-Mode Constraining. Anal. Chem. 2018; 90: 14269–14278. doi: 10.1021/acs.analchem.8b03420.

Chen L, Tse W.H, Chen Y, McDonald M.W, Melling J, Zhang J. Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism. Biosens. Bioelectron. 2017; 91: 393–399.

De Pretto L.R, Yoshimura T.M, Ribeiro M.S, Zanardi de Freitas A. Optical coherence tomography for blood glucose monitoring in vitro through spatial and temporal approaches. J. Biomed. Opt. 2016; 21: 86007. doi: 10.1117/1.JBO.21.8.086007.

Hofmann M, Fischer G, Weigel R, Kissinger D. Microwave-Based Non-invasive Concentration Measurements for Biomedical Applications. IEEE Trans. Microw. Theory Tech. 2013; 61: 2195–2204. doi: 10.1109/TMTT.2013.2250516.

Choi H, Naylon J, Luzio S, Beutler J, Birchall J, Martin C, Porch A. Design and In Vitro Interference Test of Microwave Non-invasive Blood Glucose Monitoring Sensor. IEEE Trans. Microw. Theory Tech. 2015; 63: 3016–3025. doi: 10.1109/TMTT.2015.2472019.

Ren T, Wang X, Yang PH. Vaccine and Needle free vaccination delivery system. J Microb Biochem Technol 2014;6:359-60.

Vrba J, Karch J, Vrba D., Phantoms for Development of Microwave Sensors for Non-invasive Blood Glucose Monitoring. Int. J. Antennas Propag. 2015; 2015: 1–5. doi: 10.1155/2015/570870.

Published

28-05-2022

How to Cite

CHAKRABARTY, S., BHATTACHARYA, J., CHOWDHURY, A., ROY, P., & KUMAR JHA, S. (2022). NEEDLE FREE MONITORING OF BLOOD GLUCOSE THROUGH REVERSE IONTOPHORESIS. International Journal of Applied Pharmaceutics, 14(4). https://doi.org/10.22159/ijap.2022v14i4.44288

Issue

Section

Review Article(s)