THE NATURAL AND COMMERCIAL SOURCES OF HYDROXYAPATITE/COLLAGEN COMPOSITES FOR BIOMEDICAL APPLICATIONS: A REVIEW STUDY

Authors

  • MUSTAFA MUDHAFAR Department of Anesthesia and Intensive Care Techniques, Faculty of Al-Tuff Collage, Karbala, 56001, Iraq
  • H. A. ALSAILAWI Department of Anesthesia and Intensive Care Techniques, Faculty of Al-Tuff Collage, Karbala, 56001, Iraq
  • ISMAIL ZAINOL Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak, Proton, 35900, Malaysia
  • MOHAMMED SACHIT HAMZAH Medical Laboratory Technique, Kut University College, Al-kut, Wasit, Iraq, 52001
  • SAHI JAWAD DHAHI Department of Anesthesia and Intensive Care Techniques, Faculty of Al-Tuff Collage, Karbala, 56001, Iraq
  • RUAA KADHIM MOHAMMED Department of Anesthesia and Intensive Care Techniques, Faculty of Al-Tuff Collage, Karbala, 56001, Iraq

DOI:

https://doi.org/10.22159/ijap.2022v14i4.44411

Keywords:

Hydroxyapatite, Collagen, HA/Col composites, Biomedical applications

Abstract

Bone is considered the core unit that forms the human body’s skeleton, consisting primarily of hydroxyapatite (HA) and collagen (Col). The composites of hydroxyapatite/collagen had been prepared through different fabricated techniques and were used in many bone defects as biomaterials for bone tissue engineering. The incorporation of HA and collagen is possible due to the biocompatibility of collagen and the high mechanical properties of the HA. HA/Col composites have been used in many medical and biological fields. Current study have been discussed the synthesis and characterization techniques of HA/Col composites; the study have been included to study the cytotoxicity and cell attachment of the composites, along with their applications, as well as barriers that still remain to their successful development for clinical application.

Downloads

Download data is not yet available.

References

Gupta A, Thussbas C, Koch M, Seebauer L. Management of glenoid bone defects with reverse shoulder arthroplasty-surgical technique and clinical outcomes. J Shoulder Elbow Surg. 2018;27(5):853-62. doi: 10.1016/j.jse.2017.10.004, PMID 29306665.

Qian Y, Zhou X, Sun H, Yang J, Chen Y, Li C, Wang H, Xing T, Zhang F, Gu N. Biomimetic domain-active electrospun scaffolds facilitating bone regeneration synergistically with antibacterial efficacy for bone defects. ACS Appl Mater Interfaces. 2018;10(4):3248-59. doi: 10.1021/acsami.7b14524, PMID 29172421.

Tampieri A, Iafisco M, Sandri M, Panseri S, Cunha C, Sprio S, Savini E, Uhlarz M, Herrmannsdörfer T. Magnetic bioinspired hybrid nanostructured collagen–hydroxyapatite scaffolds supporting cell proliferation and tuning regenerative process. ACS Appl Mater Interfaces. 2014;6(18):15697-707. doi: 10.1021/am5050967, PMID 25188781.

Zhu L, Luo D, Liu Y. Effect of the Nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci. 2020;12(1):6. doi: 10.1038/s41368-020-0073-y, PMID 32024822.

Filippi M, Born G, Chaaban M, Scherberich A. Natural polymeric scaffolds in bone regeneration. Front Bioeng Biotechnol. 2020;8(8):474. doi: 10.3389/fbioe.2020.00474, PMID 32509754.

Hasan MR, Mohd Yasin NS, Mohd Ghazali MS, Mohtar NF. Proximate and morphological characteristics of nano hydroxyapatite (Nano HAP) extracted from the fish bone. J Sustain Sci Manage. 2020;15(8):9-21. doi: 10.46754/jssm.2020.12.002.

Majhooll AA, Zainol I, Jaafar CN, Ha A, Hassan MZ, Mudhafar M, Majhool AA, Asaad A. A brief review on biomedical applications of hydroxyapatite use as fillers in polymer. J Chem 2019;13:112-9.

Parisi C, Salvatore L, Veschini L, Serra MP, Hobbs C, Madaghiele M, Sannino A, Di Silvio L. Biomimetic gradient scaffold of collagen–hydroxyapatite for osteochondral regeneration. J Tissue Eng. 2020;11:2041731419896068. doi: 10.1177/2041731419896068, PMID 35003613.

Song Y, Wu H, Gao Y, Li J, Lin K, Liu B, Lei X, Cheng P, Zhang S, Wang Y, Sun J, Bi L, Pei G. Zinc silicate/nano-hydroxyapatite/collagen scaffolds promote angiogenesis and bone regeneration via the p38 MAPK pathway in activated monocytes. ACS Appl Mater Interfaces. 2020;12(14):16058-75. doi: 10.1021/acsami.0c00470, PMID 32182418.

Chen L, Hu J, Ran J, Shen X, Tong H. Synthesis and cytocompatibility of collagen/hydroxyapatite nanocomposite scaffold for bone tissue engineering. Polym Compos. 2016;37(1):81-90. doi: 10.1002/pc.23157.

Andronescu E, Ficai M, Voicu G, Ficai D, Maganu M, Ficai A. Synthesis and characterization of collagen/hydroxyapatite: magnetite composite material for bone cancer treatment. J Mater Sci Mater Med. 2010;21(7):2237-42. doi: 10.1007/s10856-010-4076-7, PMID 20372983.

Teng SH, Lee EJ, Wang P, Kim HE. Collagen/hydroxyapatite composite nanofibers by electrospinning. Mater Lett. 2008;62(17-18):3055-8. doi: 10.1016/j.matlet.2008.01.104.

Mudhafar M, Zainol I, Jaafar CN, Alsailawi HA, Majhool AA. Microwave-assisted green synthesis of Ag nanoparticles using leaves of Melia dubia (Neem) and its antibacterial activities. J Adv Res Fluid Mech Therm Sci. 2020;65(1):121-9.

Zhang Z, Ma Z, Zhang Y, Chen F, Zhou Y, An Q. Dehydrothermally crosslinked collagen/hydroxyapatite composite for enhanced in vivo bone repair. Colloids Surf B Biointerfaces. 2018;163:394-401. doi: 10.1016/j.colsurfb.2018.01.011, PMID 29366982.

Ficai A, Andronescu E, Trandafir V, Ghitulica C, Voicu G. Collagen/hydroxyapatite composite obtained by electric field orientation. Mater Lett. 2010;64(4):541-4. doi: 10.1016/j.matlet.2009.11.070.

Ficai A, Andronescu E, Voicu G, Ghitulica C, Vasile BS, Ficai D, Trandafir V. Self-assembled collagen/hydroxyapatite composite materials. Chem Eng J. 2010;160(2):794-800. doi: 10.1016/j.cej.2010.03.088.

Pelin IM, Maier SS, Chitanu GC, Bulacovschi V. Preparation and characterization of a hydroxyapatite–collagen composite as a component for injectable bone substitute. Mater Sci Eng C. 2009;29(7):2188-94. doi: 10.1016/j.msec.2009.04.021.

Chang SH, Hsu YM, Wang YJ, Tsao YP, Tung KY, Wang TY. Fabrication of pre-determined shape of bone segment with collagen-hydroxyapatite scaffold and autogenous platelet-rich plasma. Journal of Materials Science: Materials in Medicine. 2009;20(1):23-31. doi: 10.1007/s10856-008-3507-1, PMID 18651114.

Walsh DP, Raftery RM, Chen G, Heise A, O’Brien FJ, Cryan SA. Rapid healing of a critical‐sized bone defect using a collagen‐hydroxyapatite scaffold to facilitate low dose, combinatorial growth factor delivery. J Tissue Eng Regen Med. 2019;13(10):1843-53. doi: 10.1002/term.2934, PMID 31306563.

Zhou G, Liu S, Ma Y, Xu W, Meng W, Lin X, Wang W, Wang S, Zhang J. Innovative biodegradable poly (L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation. Int J Nanomedicine. 2017;12:7577-88. doi: 10.2147/IJN.S146679, PMID 29075116.

Ariesanti Y, Poedjiastoeti W, Sriyanto GA, Angraini Y. Increase of fibroblast proliferation by composite membrane (polyvinyl alcohol-collagen-hydroxyapatite). In: IEEE International Conference on Health, Instrumentation and Measurement, and Natural Sciences (InHeNce). Vol. 14; 2021. p. 1-5.

Thongtham N, Chai‐in P, Unger O, Boonrungsiman S, Suwantong O. Fabrication of chitosan/collagen/hydroxyapatite scaffolds with encapsulated cissus quadrangularis extract. Polym Adv Technol. 2020;31(7):1496-507. doi: 10.1002/pat.4879.

Wei X, Zhang X, Yang Z, Li L, Sui H. Osteoinductive potential and antibacterial characteristics of collagen-coated iron oxide nanosphere containing strontium and hydroxyapatite in long term bone fractures. Arab J Chem. 2021;14(3). doi: 10.1016/j.arabjc.2020.102984, PMID 102984.

Pottathara YB, Vuherer T, Maver U, Kokol V. Morphological, mechanical, and in vitro bioactivity of gelatine/collagen/hydroxyapatite based scaffolds prepared by unidirectional freeze-casting. Polym Test. 2021;102. doi: 10.1016/j.polymertesting.2021.107308, PMID 107308.

Xichan He, Xialian Fan, Wenpo Feng, Yifei Chen, Ting Guo, F Wang, Jie Liu, K Tang. Incorporation of micro fibrillated cellulose into a collagen-hydroxyapatite scaffold for bone tissue engineering. Int J Biol Macromol. 2018;115:385-92. doi: 10.1016/j.ijbiomac.2018.04.085, PMID 29673955.

He X, Tang K, Li X, Wang F, Liu J, Zou F, Yang M, Li M. A porous collagen-carboxymethyl cellulose/hydroxyapatite composite for bone tissue engineering by bi-molecular template method. Int J Biol Macromol. 2019;137:45-53. doi: 10.1016/j.ijbiomac.2019.06.098, PMID 31220495.

He X, Tang K, Li X, Wang F, Liu J, Zou F, Yang M, Li M. A porous collagen-carboxymethyl cellulose/hydroxyapatite composite for bone tissue engineering by bi-molecular template method. Int J Biol Macromol. 2019;137:45-53. doi: 10.1016/j.ijbiomac.2019.06.098, PMID 31220495.

Kaviani A, Zebarjad SM, Javadpour S, Ayatollahi M, Bazargan-Lari R. Fabrication and characterization of low-cost freeze-gelated chitosan/collagen/hydroxyapatite hydrogel nanocomposite scaffold. Int J Polym Anal Char. 2019;24(3):191-203. doi: 10.1080/1023666X.2018.1562477.

Iqbal B, Sarfaraz Z, Muhammad N, Ahmad P, Iqbal J, Khan ZUH, Gonfa G, Iqbal F, Jamal A, Rahim A. Ionic liquid as a potential solvent for preparation of collagen-alginate-hydroxyapatite beads as bone filler. J Biomater Sci Polym Ed. 2018;29(10):1168-84. doi: 10.1080/09205063.2018.1443604, PMID 29460709.

Tang Y, Zhang H, Wei Q, Tang X, Zhuang W. Biocompatible chitosan–collagen–hydroxyapatite nanofibers coated with platelet-rich plasma for regenerative engineering of the rotator cuff of the shoulder. RSC Adv. 2019;9(46):27013-20. doi: 10.1039/C9RA03972D.

Xing F, Chi Z, Yang R, Xu D, Cui J, Huang Y, Zhou C, Liu C. Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration. Int J Biol Macromol. 2021;184:170-80. doi: 10.1016/j.ijbiomac.2021.05.019, PMID 34052273.

Castro Cesena AB, Camacho Villegas TA, Lugo Fabres PH, Novitskaya EE, McKittrick J, Licea Navarro A. Effect of starch on the mechanical and in vitro properties of collagen-hydroxyapatite sponges for applications in dentistry. Carbohydr Polym. 2016;148:78-85. doi: 10.1016/j.carbpol.2016.04.056, PMID 27185118.

Kwon GW, Gupta KC, Jung KH, Kang IK. Lamination of microfibrous PLGA fabric by electrospinning a layer of collagen-hydroxyapatite composite nanofibers for bone tissue engineering. Biomater Res. 2017;21(1):11. doi: 10.1186/s40824-017-0097-3, PMID 28620549.

Song W, Markel DC, Jin X, Shi T, Ren W. Poly(vinyl alcohol)/collagen/hydroxyapatite hydrogel: properties and in vitro cellular response. J Biomed Mater Res A. 2012;100(11):3071-9. doi: 10.1002/jbm.a.34240, PMID 22733675.

Zhao H, Tang J, Zhou D, Weng Y, Qin W, Liu C, Lv S, Wang W, Zhao X. Electrospun icariin-loaded core-shell collagen, polycaprolactone, hydroxyapatite composite scaffolds for the repair of rabbit tibia bone defects. Int J Nanomedicine. 2020;15:3039-56. doi: 10.2147/IJN.S238800, PMID 32431500.

Kozlowska J, Jundzill A, Bajek A, Bodnar M, Marszalek A, Witmanowski H, Sionkowska A. Preliminary in vitro and in vivo assessment of modified collagen/hydroxyapatite composite. Mater Lett. 2018;221:74-6. doi: 10.1016/j.matlet.2018.03.122.

Ariesanti Y, Poedjiastoeti W, Sriyanto GA, Angraini Y. Increase of fibroblast proliferation by composite membrane (polyvinyl alcohol-collagen-hydroxyapatite). In: IEEE International Conference on Health, Instrumentation and Measurement, and Natural Sciences (InHeNce). Vol. 14; 2021. p. 1-5.

Ficai A, Andronescu E, Voicu G, Ficai D. Advances in collagen/hydroxyapatite composite materials [Chapter]; 2011.

Hikmawati D, Kulsum U, Rudyardjo DI, Apsari R. Biocompatibility and osteoconductivity of scaffold porous composite collagen–hydroxyapatite based coral for bone regeneration. Open Chem. 2020;18(1):584-90. doi: 10.1515/chem-2020-0080.

Zhou J, Xu C, Wu G, Cao X, Zhang L, Zhai Z, Zheng Z, Chen X, Wang Y. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered scaffolds. Acta Biomaterialia. 2011;7(11):3999-4006. doi: 10.1016/j.actbio.2011.06.040, PMID 21757035.

Chen LY, Cui YW, Zhang LC. Recent development in beta titanium alloys for biomedical applications. Metals. 2020;10(9):1139. doi: 10.3390/met10091139.

Perse M, Veceric Haler Z. Cisplatin-induced rodent model of kidney injury: characteristics and challenges. BioMed Res Int. 2018;2018:1462802. doi: 10.1155/2018/1462802, PMID 30276200.

Heinemann S, Heinemann C, Jager M, Neunzehn J, Wiesmann HP, Hanke T. Effect of silica and hydroxyapatite mineralization on the mechanical properties and the biocompatibility of nanocomposite collagen scaffolds. ACS applied materials and interfaces. 2011;3(11):4323-31.

Ciobanu G, Harja M. Cerium-doped hydroxyapatite/collagen coatings on titanium for bone implants. Ceram Int. 2019;45(2):2852-7. doi: 10.1016/j.ceramint.2018.07.290.

Popa CL, Bartha CM, Albu M, Guegan R, Motelica Heino M, Chifiriuc CM, Bleotu C, Badea ML, Antohe S. Synthesis, characterization and cytotoxicity evaluation on zinc doped hydroxyapatite in collagen matrix. Dig J Nanomater Biostruct. 2015;10:681-91.

Mondal S, Hoang G, Manivasagan P, Moorthy MS, Vy Phan TT, Kim HH, Nguyen TP, Oh J. Rapid microwave-assisted synthesis of gold-loaded hydroxyapatite collagen nano-bio materials for drug delivery and tissue engineering application. Ceram Int. 2019;45(3):2977-88. doi: 10.1016/j.ceramint.2018.10.016.

Rasool I, Singh A. In vitro studies of biomaterial device” hydroxyapatite” prepared from different routes for biomedical applications in vitro. Asian J Pharm Clin Res. 2018;11(10):493-7. doi: 10.22159/ajpcr.2018.v11i10.27452.

Predoi D, Iconaru SL, Albu M, Petre CC, Jiga G. Physicochemical and antimicrobial properties of silver‐doped hydroxyapatite collagen biocomposite. Polym Eng Sci. 2017;57(6):537-45. doi: 10.1002/pen.24553.

Sionkowska A, Kozłowska J. Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute. International Journal of Biological Macromolecules. 2010;47(4):483-7. doi: 10.1016/j.ijbiomac.2010.07.002, PMID 20637799.

Socrates R, Sakthivel N, Rajaram A, Ramamoorthy U, Kalkura SN. Novel fibrillar collagen–hydroxyapatite matrices loaded with silver nanoparticles for orthopedic application. Mater Lett. 2015;161:759-62. doi: 10.1016/j.matlet.2015.09.089.

Gleeson JP, Plunkett NA, O’Brien FJ. Addition of hydroxyapatite improves the stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Eur Cell Mater. 2010;20(218):30218-30. doi: 10.22203/ecm.v020a18, PMID 20922667.

Yılmaz E, Cakıroglu B, Gokce A, Findik F, Gulsoy HO, Gulsoy N, Mutlu O, Ozacar M. Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition. Mater Sci Eng C Mater Biol Appl. 2019;101:292-305. doi: 10.1016/j.msec.2019.03.078, PMID 31029323.

Zhang Y, Reddy VJ, Wong SY, Li X, Su B, Ramakrishna S, Lim CT. Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan. Tissue Engineering Part A. 2010;16(6):1949-60. doi: 10.1089/ten.TEA.2009.0221, PMID 20088700.

Wang QQ, Ma N, Jiang B, Gu ZW, Yang BC. Preparation of a HA/collagen film on a bioactive titanium surface by the electrochemical deposition method. Biomed Mater. 2011;6(5):055009. doi: 10.1088/1748-6041/6/5/055009.

Watanabe K, Nishio Y, Makiura R, Nakahira A, Kojima C. Paclitaxel-loaded hydroxyapatite/collagen hybrid gels as drug delivery systems for metastatic cancer cells. Int J Pharm. 2013;446(1-2):81-6. doi: 10.1016/j.ijpharm.2013.02.002, PMID 23402979.

Suchy T, Supova M, Sauerova P, Hubalek Kalbacova MH, Klapkova E, Pokorny M, Horny L, Zavora J, Ballay R, Denk F, Sojka M, Vistejnova L. Evaluation of collagen/hydroxyapatite electrospun layers loaded with vancomycin, gentamicin and their combination: comparison of release kinetics, antimicrobial activity and cytocompatibility. European Journal of Pharmaceutics and Biopharmaceutics. 2019;140:50-9. doi: 10.1016/j.ejpb.2019.04.021, PMID 31055065.

Mudhafar M, Alsailawi H, Abdulrasool M, Jawad Rk, Mmays A. Mini-review of phytochemicals of ten ficus species. International Journal Of Chemistry Research. 2021;1:7-18.

Andronescu E, Ficai A, Albu MG, Mitran V, Sonmez M, Ficai D, Ion R, Cimpean A. Collagen-hydroxyapatite/cisplatin drug delivery systems for locoregional treatment of bone cancer. Technology in Cancer Research and Treatment. 2013;12(4):275-84.

Suchy T, Supova M, Klapkova E, Adamkova V, Zavora J, Zaloudkova M, Ryglova S, Ballay R, Denk F, Pokorny M, Sauerova P, Hubalek Kalbacova M, Horny L, Vesely J, Vonavkova T, Prusa R. The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: microstructure vs. nanostructure. Eur J Pharm Sci. 2017;100:219-29. doi: 10.1016/j.ejps.2017.01.032, PMID 28132822.

Lian X, Liu H, Wang X, Xu S, Cui F, Bai X. Antibacterial and biocompatible properties of vancomycin-loaded nano-hydroxyapatite/collagen/poly (lactic acid) bone substitute. Progress in Natural Science: Materials International. 2013;23(6):549-56. doi: 10.1016/j.pnsc.2013.11.003.

Mudhafar M, Zainol I, Jaafar CN, Alsailawi HA, Desa S. A review study on synthesis methods of Ag Nanoparticles, considering antibacterial property and cytotoxicity. International Journal of Drug Delivery Technology. 2021;11(2):635-48.

Majhooll AA, Zainol I, Jaafar CN, Mudhafar M, Ha A, Asaad A, Mezaal FW. Preparation of fish scales hydroxyapatite (FsHAp) for potential use as fillers in polymer. J Chem. 2019;13:97-104.

Joy DP, Kumar KK, Kumar SK, KSS. Collagen from squid and its bioliogical activity. Int J Curr Pharm Res. 2017;9(3):24-6.

Rusu LC, Nedelcu IA, Georgiana Albu M, Sonmez M, Voicu G, Radulescu M, Ficai D, Ficai A, Negrutiu ML, Sinescu C. Tetracycline loaded collagen/hydroxyapatite composite materials for biomedical applications. Journal of Nanomaterials. 2015;2015:1-5. doi: 10.1155/2015/361969.

Oshima S, Sato T, Honda M, Suetsugu Y, Ozeki K, Kikuchi M. Fabrication of gentamicin-loaded hydroxyapatite/collagen bone-like nanocomposite for anti-infection bone void fillers. International J Molecular Sciences. 2020;21(2):551. doi: 10.3390/ijms21020551, PMID 31952242.

Mudhafar M, Zainol I, Alsailawi HA, Aiza Jaafar CN. Synthesis and characterization of fish scales of hydroxyapatite/collagen–silver nanoparticles composites for the applications of bone filler. Journal of the Korean Ceramic Society. 2022;59(2):229-39. doi: 10.1007/s43207-021-00154-0.

Cao HD, Tan YF, Lin XY, Fan HS, Zhang XD. Cytocompatibility testing of hydroxyapatite/collagen composite cross-linked with glutaraldehyde. In Key Eng Mater. 2005;288:223-6.

Wenpo F, Gaofeng L, Shuying F, Yuanming Q, Keyong T. Preparation and characterization of collagen–hydroxyapatite/pectin composite. International Journal of Biological Macromolecules. 2015;74:218-23. doi: 10.1016/j.ijbiomac.2014.11.031, PMID 25485944.

Ficai A, Andronescu E, Voicu G, Ghitulica C, Ficai D. The influence of collagen support and ionic species on the morphology of collagen/hydroxyapatite composite materials. Materials Characterization. 2010 Apr 1;61(4):402-7. doi: 10.1016/j.matchar.2010.01.003.

Tenkumo T, Vanegas Saenz JR, Takada Y, Takahashi M, Rotan O, Sokolova V, Epple M, Sasaki K. Gene transfection of human mesenchymal stem cells with a nNano‐hydroxyapatite–collagen scaffold containing DNA‐functionalized calcium phosphate nanoparticles. Genes to Cells. 2016;21(7):682-95. doi: 10.1111/gtc.12374, PMID 27238217.

Yoshida T, Kikuchi M, Koyama Y, Takakuda K. Osteogenic activity of MG63 cells on bone-like hydroxyapatite/collagen nanocomposite sponges. Journal of Materials Science: Materials in Medicine. 2010;21(4):1263-72. doi: 10.1007/s10856-009-3938-3, PMID 19924517.

Zhang Y, Reddy VJ, Wong SY, Li X, Su B, Ramakrishna S, Lim CT. Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan. Tissue Engineering Part A. 2010;16(6):1949-60. doi: 10.1089/ten.TEA.2009.0221, PMID 20088700.

Lei X, Gao J, Xing F, Zhang Y, Ma Y, Zhang G. Comparative evaluation of the physicochemical properties of nano-hydroxyapatite/collagen and natural bone ceramic/collagen scaffolds and their osteogenesis-promoting effect on MC3T3-E1 cells. Regenerative Biomaterials. 2019;6(6):361-71. doi: 10.1093/rb/rbz026, PMID 31827888.

Huang Z, Yu B, Feng Q, Li S, Chen Y, Luo L. In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells. Carbohydrate Polymers. 2011;85(1):261-7. doi: 10.1016/j.carbpol.2011.02.029.

Chen Y, Huang Z, Li X, Li S, Zhou Z, Zhang Y, Yu BFeng Ql, Yu B. In vitro biocompatibility and osteoblast differentiation of an injectable chitosan/nano-hydroxyapatite/collagen scaffold. Journal of Nanomaterials. 2012;2012:1-6. doi: 10.1155/2012/401084.

Sun TW, Zhu YJ, Chen F, Zhang YG. Ultralong hydroxyapatite nanowire/collagen bio paper with high flexibility, improved mechanical properties and excellent cellular attachment. Chemistry–An Asian Journal. 2017;12(6):655-64. doi: 10.1002/asia.201601592, PMID 28133927.

Montalbano G, Molino G, Fiorilli S, Vitale-Brovarone C. Synthesis and incorporation of rod-like nano-hydroxyapatite into type I collagen matrix: A hybrid formulation for 3D printing of bone scaffolds. Journal of the European Ceramic Society. 2020;40(11):3689-97. doi: 10.1016/j.jeurceramsoc.2020.02.018.

Takallu S, Mirzaei E, Azadi A, Karimizade A, Tavakol S. Plate-shape carbonated hydroxyapatite/collagen nanocomposite hydrogel via in situ mineralization of hydroxyapatite concurrent with gelation of collagen at pH = 7.4 and 37°C. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2019;107(6):1920-9. doi: 10.1002/jbm.b.34284, PMID 30467948.

Sionkowska A, Kozłowska J. Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute. International Journal of Biological Macromolecules. 2010;47(4):483-7. doi: 10.1016/j.ijbiomac.2010.07.002, PMID 20637799.

Marchianti ACN, Prameswari MC, Sakinah EN, Ulfa EU. The enhancement of collagen synthesis process on the diabetic wound by Merremia mammosa (Lour.) extract fraction. Int J Pharm Pharm Sci. 2019;11(2):47-50. doi: 10.22159/ijpps.2019v11i2.30170.

Ying RL, Sun RX, Li QQ, Fu CN, Chen KZ. Synthesis of ultralong hydroxyapatite micro/nanoribbons and their application as reinforcement in collagen scaffolds for bone regeneration. Ceramics International. 2019;45(5):5914-21. doi: 10.1016/j.ceramint.2018.12.059.

Zhao X, Li H, Xu Z, Li K, Cao S, Jiang G. Selective preparation and characterization of nano-hydroxyapatite/collagen coatings with three-dimensional network structure. Surf Coatings Technol. 2017;322:227-37. doi: 10.1016/j.surfcoat.2017.05.042.

Jones GL, Walton R, Czernuszka J, Griffiths SL, El Haj AJ, Cartmell SH. Primary human osteoblast culture on 3D porous collagen‐hydroxyapatite scaffolds. Journal of Biomedical Materials Research Part A. 2010;94(4):1244-50. doi: 10.1002/jbm.a.32805, PMID 20694991.

Türk S, Altınsoy I, Celebi Efe GC, İIpek M, Ozacar M, Bindal C. 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyapatite composite scaffolds for bone tissue engineering. Materials Science and Engineering: C Mater Biol Appl. 2018;92:757-68. doi: 10.1016/j.msec.2018.07.020, PMID 30184804.

Perez RA, Ginebra MP. Injectable collagen/α-tricalcium phosphate cement: collagen–mineral phase interactions and cell response. Journal of Materials Science: Materials in Medicine. 2013;24(2):381-93. doi: 10.1007/s10856-012-4799-8, PMID 23104087.

Uezono M, Takakuda K, Kikuchi M, Suzuki S, Moriyama K. Hydroxyapatite/collagen nanocomposite‐coated titanium rod for achieving rapid osseointegration onto bone surface. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2013;101(6):1031-8. doi: 10.1002/jbm.b.32913, PMID 23554303.

Huang Y, He J, Gan L, Liu X, Wu Y, Wu F, Gu ZW. Osteoconductivity and osteoinductivity of porous hydroxyapatite coatings deposited by liquid precursor plasma spraying: in vivo biological response study. Biomedical Materials. 2014;9(6):065007:065007. doi: 10.1088/1748-6041/9/6/065007.

Zhu L, Xie Y, Wen B, Ye M, Liu Y, Imam KMSU, Cai H, Zhang C, Wang F, Xin F. Porcine bone collagen peptides promote osteoblast proliferation and differentiation by activating the PI3K/Akt signaling pathway. Journal of Functional Foods. 2020;64. doi: 10.1016/j.jff.2019.103697, PMID 103697.

Santhanam R, Rameli MAP, Al Jeffri AA, Ismail WIW. Bovine-based collagen dressings in wound care management. Journal of Pharmaceutical Research International. 2020;9:48-63. doi: 10.9734/jpri/2020/v32i3330949.

Noorzai S, Verbeek CJR, Lay MC, Swan J. Collagen extraction from various waste bovine hide sources. Waste Biomass Valor. 2020;11(11):5687-98. doi: 10.1007/s12649-019-00843-2.

Salvatore L, Gallo N, Aiello D, Lunetti P, Barca A, Blasi L, Madaghiele M, Bettini S, Giancane G, Hasan M, Borovkov V, Natali ML, Campa L, Valli L, Capobianco L, Napoli A, Sannino A. An insight on type I collagen from horse tendon for the manufacture of implantable devices. International J Biological Macromolecules. 2020;154:291-306. doi: 10.1016/ j.ijbiomac.2020.03.082, PMID 32173436.

Rittie L. Type I collagen purification from rat tail tendons. In: Fibrosis Methods Mol Biol 2017 .p. 287-308. doi: 10.1007/978-1-4939-7113-8_19, PMID 28836209.

Carvalho AM, Marques AP, Silva TH, Reis RL. Evaluation of the potential of collagen from codfish skin as a biomaterial for biomedical applications. Marine Drugs. 2018;16(12):495. doi: 10.3390/md16120495, PMID 30544788.

Kolmas J, Krukowski S, Laskus A, Jurkitewicz M. Synthetic hydroxyapatite in pharmaceutical applications. Ceramics International. 2016;42(2):2472-87. doi: 10.1016/j.ceramint.2015.10.048.

Sato T, Kochi A, Shirosaki Y, Hayakawa S, Aizawa M, Osaka A, Kikuchi M. Preparation of injectable hydroxyapatite/collagen paste using sodium alginate and influence of additives. J Ceram Soc Japan. 2013;121(1417):775-81. doi: 10.2109/jcersj2.121.775.

Silva CC, Thomazini D, Pinheiro AG, Aranha N, Figueiroo SD, Goes JC, Sombra ASB. Collagen–hydroxyapatite films: piezoelectric properties. Materials Science and Engineering: B. 2001;86(3):210-8. doi: 10.1016/S0921-5107(01)00674-2.

Castro Cesena AB, Camacho Villegas TA, Lugo Fabres PH, Novitskaya EE, McKittrick J, Licea Navarro A. Effect of starch on the mechanical and in vitro properties of collagen-hydroxyapatite sponges for applications in dentistry. Carbohydrate Polymers. 2016;148:78-85. doi: 10.1016/j.carbpol.2016.04.056, PMID 27185118.

Mudhafar M, Zainol I, Alsailawi HA, Jaafar CN, Mohammed RK, Dhahi SJ. Preparation reparation and Characterization of beads of fish scales hydroxyapatite/collagen/silver nanoparticles by using infiltration method. Malaysian Journal of Microscopy. 2021;17(2):239-50.

Mederle N, Marin S, Marin MM, Danila E, Mederle O, Albu Kaya MG, Ghica MV. Innovative biomaterials based on collagen-hydroxyapatite and doxycycline for bone regeneration. Advances in Materials Science and Engineering. 2016;2016:1-5. doi: 10.1155/2016/3452171.

Liu Z, Yin X, Ye Q, He W, Ge M, Zhou X, Hu J, Zou S. Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold. Journal of Biomaterials Applications. 2016;31(1):121-31. doi: 10.1177/0885328216637978, PMID 27009932.

Tapsir Z, Saidin S. Synthesis and characterization of collagen–hydroxyapatite immobilized on polydopamine grafted stainless steel. Surf Coatings Technol. 2016;285:11-6. doi: 10.1016/j.surfcoat.2015.11.024.

Calabrese G, Giuffrida R, Fabbi C, Figallo E, Lo Furno D, Gulino R, Colarossi C, Fullone F, Giuffrida R, Parenti R, Memeo L, Forte S. Collagen-hydroxyapatite scaffolds induce human adipose derived stem cells osteogenic differentiation in vitro. PLoS ONE. 2016;11(3):e0151181. doi: 10.1371/journal.pone.0151181, PMID 26982592.

Kane RJ, Weiss-Bilka HE, Meagher MJ, Liu Y, Gargac JA, Niebur GL, Wagner DR, Roeder RK. Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties. Acta Biomaterialia. 2015;17:16-25. doi: 10.1016/j.actbio.2015.01.031, PMID 25644451.

Quinlan E, Lopez Noriega A, Thompson E, Kelly HM, Cryan SA, O'’Brien FJ. Development of collagen–hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. Journal of Controlled Release. 2015;198:71-9. doi: 10.1016/j.jconrel.2014.11.021, PMID 25481441.

Kane RJ, Weiss Bilka HE, Meagher MJ, Liu Y, Gargac JA, Niebur GL, Wagner DR, Roeder RK. Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties. Acta Biomaterialia. 2015;17:16-25. doi: 10.1016/j.actbio.2015.01.031, PMID 25644451.

Zhou Y, Yao H, Wang J, Wang D, Liu Q, Li Z. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering. Int Journal of Nanomedicine. 2015;10:3203-15. doi: 10.2147/IJN.S79241, PMID 25995630.

Mudhafar M, Alsailawi HA, Raheem HA, Mohammed RK. A review study on the biomaterials and bone grafts for bone defects applications. European Journal of Biomedical. 2022;9(4):63-73.

Bendtsen ST, Wei M. Synthesis and characterization of a novel injectable alginate–collagen–hydroxyapatite hydrogel for bone tissue regeneration. J Mater Chem B. 2015;3(15):3081-90. doi: 10.1039/c5tb00072f, PMID 32262508.

Majhool AA, Zainol I, Azziz SS, Jaafar CN, Jahil MM. Mechanical properties improvement of epoxy composites by natural hydroxyapatite from fish scales as a filler. 2018;10(2):1424-9.

Villa MM, Wang L, Huang J, Rowe DW, Wei M. Bone tissue engineering with collagen–hydroxyapatite scaffold and culture expanded bone marrow stromal cells. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2015;103(2):243-53. doi: 10.1002/jbm.b.33225, PMID 24909953.

Mudhafar M, Zainol I, Alsailawi HA, Aiza Jaafar CN. Green synthesis of silver nanoparticles using neem and collagen of fish scales as a reducing and stabilizer agents. Jordan Journal of Biological Sciences. 2021;14(5):899-903. doi: 10.54319/ jjbs/140503.

Villa MM, Wang L, Rowe DW, Wei M. Effects of cell-attachment and extracellular matrix on bone formation in vivo in collagen-hydroxyapatite scaffolds. PloS ONE. 2014;9(10):e109568. doi: 10.1371/journal.pone.0109568, PMID 25329879.

Prosecka E, Rampichova M, Litvinec A, Tonar Z, Kralickova M, Vojtova L, Kochova P, Plencner M, Buzgo M, Mickova A, Jancar J, Amler E. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte‐rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. Journal of Biomedical Materials Research Part A. 2015;103(2):671-82. doi: 10.1002/jbm.a.35216, PMID 24838634.

Mudhafar M, Zainol I, Aiza Jaafar CN, Alsailawi HA, Majhool AA. Two green synthesis methods to prepared nanoparticles of Ag: two sizes and shapes via using extract of M. dubia leaves. J Comput Theor Nanosci. 2020 Jul 1;17(7):2882-9. doi: 10.1166/jctn.2020.8954.

Sionkowska A, Kozłowska J. Properties and modification of porous 3-D collagen/hydroxyapatite composites. International Journal Biological Macromolecules. 2013;52:250-9. doi: 10.1016/j.ijbiomac.2012.10.002, PMID 23063427.

Laydi F, Rahouadj R, Cauchois G, Stoltz JF, De Isla N. Hydroxyapatite incorporated into collagen gels for mesenchymal stem cell culture. Biomed Mater Eng. 2013;23(4):311-5. doi: 10.3233/BME-130755, PMID 23798652.

Mudhafar MU, Zainol IS. Medical values, antimicrobial, and anti-fungal activities of polyalthia genus. International Journal of Pharmaceutical Research. 2019;11(1):90-6.

Panda NN, Jonnalagadda S, Pramanik K. Development and evaluation of cross-linked collagen-hydroxyapatite scaffolds for tissue engineering. Journal of Biomaterials Science, Polymer Edition. 2013;24(18):2031-44. doi: 10.1080/09205063.2013.822247, PMID 23905722.

Antebi B, Cheng X, Harris JN, Gower LB, Chen XD, Ling J. Biomimetic collagen–hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique. Tissue Engineering Part C: Methods. 2013;19(7):487-96. doi: 10.1089/ten.TEC.2012.0452, PMID 23157544.

Alsailawi HA, Misnan R, Mudhafar M, A Lsailawi. Major and minor aallergen ige reactivity of purple mud crab (Scylla tranquebarica) against a cross-reactive aallergen in crustacean and molluscs in patients with a seafood allergy. Research Journal of Pharmacy and Technology. 2021;14(1):239-44. doi: 10.5958/0974-360X.2021.00042.1.

Akkouch A, Zhang Z, Rouabhia M. Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (L-lactide-co-ε-caprolactone) scaffold. Journal of Biomaterials Applications. 2014;28(6):922-36. doi: 10.1177/0885328213486705, PMID 23640860.

Zainurin MA, Zainol I, Mudhafar M. Biogenic synthesis of silver nanoparticles using neem leaf extract as reducing agent and hydrolyzed collagen as stabilizing agent. Malaysian Journal of Microscopy. 2022;18(1):215-25.

Al Sailawi HA, Misnan R, Yadzir ZH, Abdullah N, Bakhtiar F, Arip M, Mudhafar M, Ateshan HM. Effects of different salting and drying methods on allergenicity of purple mud crab (Scylla tranquebarica). Indian Journal of Ecology. 2020;47(4):1173-9.

Chang SH, Hsu YM, Wang YJ, Tsao YP, Tung KY, Wang TY. Fabrication of pre-determined shape of bone segment with collagen-hydroxyapatite scaffold and autogenous platelet-rich plasma. Journal of Materials Science: Materials in Medicine. 2009;20(1):23-31. doi: 10.1007/s10856-008-3507-1, PMID 18651114.

Zhou J, Xu C, Wu G, Cao X, Zhang L, Zhai Z, Zheng Z, Chen X, Wang Y. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered scaffolds. Acta Biomaterialia. 2011;7(11):3999-4006. doi: 10.1016/j.actbio.2011.06.040, PMID 21757035.

Mudhafar M, Zainol I, Jaafar CN, Alsailawi HA, Majhool AA, Alsaady M. Phytochemical screening and characterization of meliadubia leaves extract for antimicrobial activity against escherichia coli and staphylococcus aureus. Indian Journal of Ecology. 2020;47(2):493-6.

Heinemann S, Heinemann C, Jager M, Neunzehn J, Wiesmann HP, Hanke T. Effect of silica and hydroxyapatite mineralization on the mechanical properties and the biocompatibility of nanocomposite collagen scaffolds. ACS Applied Materials and Interfaces. 2011;3(11):4323-31.

Akkouch A, Zhang Z, Rouabhia M. A novel collagen/ hydroxyapatite/poly (lactide‐co‐ε‐-caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration. Journal of Biomed Materials Research Part A. 2011;96(4):693-704. doi: 10.1002/jbm.a.33033, PMID 21284080.

Asran AS, Henning S, Michler GH. Polyvinyl alcohol–collagen–hydroxyapatite biocomposite nanofibrous scaffold: mimicking the key features of natural bone at the nanoscale level. Polymer. 2010;51(4):868-76. doi: 10.1016/j.polymer.2009.12.046.

Gleeson JP, Plunkett NA, O’Brien FJ. Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Eur Cell Mater. 2010;20(218):30218-30. doi: 10.22203/ecm.v020a18, PMID 20922667.

Zhang Y, Reddy VJ, Wong SY, Li X, Su B, Ramakrishna S, Lim CT. Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan. Tissue Engineering Part A. 2010;16(6):1949-60. doi: 10.1089/ten.TEA.2009.0221, PMID 20088700.

Majhool AA, Zainol I, Azziz SS, Jaafar CN, Jahil MM. Mechanical properties improvement of epoxy composites by natural hydroxyapatite from fish scales as a fillers. International Journal of Research in Pharmaceutical Sciences 2018;10(2):1424-9. doi: 10.26452/ijrps.v10i2.708

Jones GL, Walton R, Czernuszka J, Griffiths SL, El Haj AJ, Cartmell SH. Primary human osteoblast culture on 3D porous collagen‐hydroxyapatite scaffolds. Journal of Biomedical Materials Research Part A. 2010;94(4):1244-50. doi: 10.1002/jbm.a.32805, PMID 20694991.

Published

07-07-2022

How to Cite

MUDHAFAR, M., ALSAILAWI, H. A., ZAINOL, I., SACHIT HAMZAH, M., DHAHI, S. J., & MOHAMMED, R. K. (2022). THE NATURAL AND COMMERCIAL SOURCES OF HYDROXYAPATITE/COLLAGEN COMPOSITES FOR BIOMEDICAL APPLICATIONS: A REVIEW STUDY. International Journal of Applied Pharmaceutics, 14(4), 77–87. https://doi.org/10.22159/ijap.2022v14i4.44411

Issue

Section

Review Article(s)

Most read articles by the same author(s)