A REVIEW ON GREEN-SYNTHESIS OF CERIUM OXIDE NANOPARTICLES: FOCUS ON CENTRAL NERVOUS SYSTEM DISORDERS

Authors

  • P. SRIRAMCHARAN Department of Pharmaceutics, JSS Academy of Higher Education & Research, JSS College of Pharmacy, The Nilgiris, Ooty-643001, Tamilnadu, India
  • JAWAHAR NATARAJAN Department of Pharmaceutics, JSS Academy of Higher Education & Research, JSS College of Pharmacy, The Nilgiris, Ooty-643001, Tamilnadu, India
  • RAJESHKUMAR RAMAN Department of Biotechnology, JSS Academy of Higher Education and Research, JSS College of Pharmacy, The Nilgiris, Ooty-643001, Tamilnadu, India
  • G. NAGARAJU Department of Chemistry Siddaganga Institute of Technology, Tumkur, Karnataka India
  • A. JUSTIN Department of Pharmacology, JSS Academy of Higher Education &Research, JSS College of Pharmacy, The Nilgiris, Ooty-643001, Tamilnadu, India
  • V. SENTHIL Department of Pharmaceutics, JSS Academy of Higher Education & Research, JSS College of Pharmacy, The Nilgiris, Ooty-643001, Tamilnadu, India

DOI:

https://doi.org/10.22159/ijap.2022v14i4.44487

Keywords:

Green synthesis, Cerium oxide nanoparticles, Microorganisms, Plants, , Reactive Oxygen Species, Antioxidant, Central Nervous Disorders

Abstract

Green Synthesized Cerium oxide nanoparticles (CeO2NPs) have sparked a lot of interest in numerous disciplines of science and Technology during the past decade. A wide range of biological resources has been employed in synthesizing CeO2NPs, including plants, microorganisms, and other biological products. Biosynthesis procedures, current knowledge, and prospects in the synthesis of Green synthesis of CeO2NPs are also discussed. Neurodegenerative diseases, such as aging, trauma, Alzheimer's and Parkinson's, and other neurological problems, are linked to higher oxidative stress and superoxide radicals generation. Cerium oxide nanoparticles' antioxidant properties suggest that they may be useful in the treatment of CNS diseases. The biological antioxidant benefits of cerium oxide nanoparticles on extending cell and organism lifespan, preventing a free radical attack, and preventing trauma-induced neurological damage are discussed in this section.CeO2NPs, an aspect of nanotechnology, would emerge as a novel drug delivery carrier through therapeutic strategies. In several diseases oxidative stress and inflammation. CeO2NPs exhibited a remarkable ability to switch between +3 and +4 oxidation states making this an efficient therapeutic option and an effective drug delivery agent. Further Reactive oxygen and nitrogen species. The overall goal of this study is to provide reasonable insight into CeO2NPs as new therapeutic agents and to solve the challenges, of safely and effectively employing these CeO2NPs for efficient management of Central Nervous System diseases.

Downloads

Download data is not yet available.

References

Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England). 2015;385(9963):117-71.doi: 10.1016/s0140-6736(14)61682-2.

Catalá-López F, Gènova-Maleras R, Vieta E, Tabarés-Seisdedos R. The increasing burden of mental and neurological disorders. European neuro psychopharmacology. the journal of the European College of Neuro psychopharmacology.2013;23(11):1337-9. doi:10.1016/j.euroneuro.2013.04.001.

Kassebaum NJ, Arora M, Barber RM, Bhutta ZA, Brown J, Carter A, et al. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet (London, England). 2016;388(10053):1603-58. doi: 10.1016/s0140-6736(16)31460-x.

Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet (London, England). 2016;388(10053):1545-602. doi: 10.1016/s0140-6736(16)31678-6.

Atun R. Transitioning health systems for multimorbidity. Lancet (London, England). 2015;386(9995):721-2. doi: 10.1016/s0140-6736(14)62254-6.

Wallace E, Salisbury C, Guthrie B, Lewis C, Fahey T, Smith SM. Managing patients with multimorbidity in primary care. BMJ (Clinical research ed). 2015;350:h176. doi: 10.1136/bmj.h176.

Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet (London, England). 2012;380(9836):37-43. doi: 10.1016/s0140-6736(12)60240-2.

Cui X, Liew Z, Hansen J, Lee PC, Arah OA, Ritz B. Cancers Preceding Parkinson's Disease after Adjustment for Bias in a Danish Population-Based Case-Control Study. Neuroepidemiology. 2019;52(3-4):136-143. doi: 10.1159/000494292.

Plantone D, Renna R, Sbardella E, Koudriavtseva T. Concurrence of multiple sclerosis and brain tumors. Front Neurol. 2015 Mar 4;6:40. doi: 10.3389/fneur.2015.00040.

Melamed E, Lee MW. Multiple Sclerosis and Cancer: The Ying-Yang Effect of Disease Modifying Therapies. Front Immunol. 2020 Jan 10;10:2954. doi: 10.3389/fimmu.2019.02954.

Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell. 2014 Mar;26(3):1069-80. doi: 10.1105/tpc.113.120642.

Markkanen E, Meyer U, Dianov GL. DNA Damage and Repair in Schizophrenia and Autism: Implications for Cancer Comorbidity and Beyond. Int J Mol Sci. 2016 Jun 1;17(6):856. doi: 10.3390/ijms17060856.

Liu R, Gao X, Lu Y, Chen H. Meta-analysis of the relationship between Parkinson diseaseandmelanoma.Neurology.2011;76(23):2002-9.doi: 10.1212/WNL.0b013e31821e554e.

Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015 Jun;93:52-79. doi: 10.1016/j.ejpb.2015.03.018.

Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018 Apr 3;9:1050-1074. doi: 10.3762/bjnano.9.98.

Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine (London, England). 2013;8(9):1483-508. doi: 10.2217/nnm.13.133.

He L, Su Y, Lanhong J, Shi S. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies: a review. Journal of Rare Earths. 2015;33(8):791-9. doi: https://doi.org/10.1016/S1002-0721(14)60486-5.

Walkey C, Das S, Seal S, Ehrlichman J, Heckman K, Ghibelli L, et al. Catalytic Properties and Biomedical Applications of Cerium Oxide Nanoparticles. Environmental science Nano. 2015;2(1):33-53. doi: 10.1039/c4en00138a.

Rajeshkumar S, Naik P. Synthesis and biomedical applications of Cerium oxide nanoparticles - A Review. Biotechnology reports (Amsterdam, Netherlands). 2018;17:1-5. doi: 10.1016/j.btre.2017.11.008.

Magudieshwaran R, Ishii J, Raja KCN, Terashima C, Venkatachalam R, Fujishima A, et al. Green, and chemical synthesized CeO2 nanoparticles for photo catalytic indoor air pollutant degradation. Materials Letters. 2019;239:40-4. doi: https://doi.org/10.1016/j.matlet.2018.11.172.

Arunachalam T, Karpagasundaram M, Rajarathinam N. Ultrasound-assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical, and antibacterial properties. Materials Science-Poland. 2017;35:791 - 8.

Darroudi M, Sarani M, RezaKazemiOskuee, AliKhorsandZak, AliHosseini H, LeilaGholami. Green synthesis and evaluation of metabolic activity of starch mediated nanoceria. Ceramics International. 2013.

Kannan S, Sundrarajan M. A Green Approach for the Synthesis of a Cerium Oxide Nanoparticle: Characterization and Antibacterial Activity. International Journal of Nanoscience. 2014;13:1450018. doi: 10.1142/S0219581X14500185.

Korotkova A, Polivanova O, Gavrish I, Kosyan D, Bagrov D, Klinov D, et al. "Green" Synthesis of Cerium Oxide Particles in Water Extracts Petroselinum Crispum. Current Nanomaterials. 2019;04. doi: 10.2174/2405461504666190911155421.

Renganathan S, Saranyaadevi K, Subha V, Ramaswami Sachidanandan ER. Green synthesis and characterization of silver nanoparticle using leaf extract of Capparis zeylanica. Asian Journal of Pharmaceutical and Clinical Research. 2014;7.

Kumar KM, Mahendhiran M, Diaz MC, Hernandez-Como N, Hernandez-Eligio A, Torres-Torres G, et al. Green synthesis of Ce3+ rich CeO2 nanoparticles and its antimicrobial studies. Materials Letters. 2018;214:15-9.

Maqbool Q, Nazar M, Naz S, Hussain T, Jabeen N, Kausar R, et al. Antimicrobial potential of green synthesized CeO(2) nanoparticles from Olea europaea leaf extract. International journal of nanomedicine. 2016;11:5015-25. doi: 10.2147/ijn.s113508.

Pandiyan N, Murugesan B, Sonamuthu J, Samayanan S, Mahalingam S. Facile biological synthetic strategy to morphologically aligned CeO(2)/ZrO(2) core nanoparticles using Justicia adhatoda extract and ionic liquid: Enhancement of its bio-medical properties. Journal of photochemistry and photobiology B, Biology. 2018;178:481-8. doi: 10.1016/j.jphotobiol.2017.11.036.

Charbgoo F, Ahmad MB, Darroudi M. Cerium oxide nanoparticles: green synthesis and biological applications. International journal of nanomedicine. 2017;12:1401-13. doi: 10.2147/ijn.s124855.

Dutta D, Mukherjee R, Patra M, Banik M, Dasgupta R, Mukherjee M, et al. Green synthesized cerium oxide nanoparticle: A prospective drug against oxidative harm. Colloids and surfaces B,Biointerfaces.2016;147:4553.doi:10.1016/j.colsurfb.2016.07.045

Miri A, Darroudi M, Sarani M. Biosynthesis of cerium oxide nanoparticles and its cytotoxicity survey against colon cancer cell line. Applied Organometallic Chemistry. 2020;34. doi: 10.1002/aoc.5308.

Gopinath K, Karthika V, Sundaravadivelan C, Gowri S, Arumugam A. Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. Journal of Nanostructure in Chemistry. 2015;5(3):295-303.

Elahi B, Mirzaee M, Darroudi M, Kazemi Oskuee R, Sadri K, Amiri MS. Preparation of cerium oxide nanoparticles in Salvia Macrosiphon Boiss seeds extract and investigation of their photo-catalytic activities. Ceramics International. 2019;45(4):4790-7. doi.org/10.1016/j.ceramint.2018.11.173

Nadeem M, Tungmunnithum D, Hano C, Abbasi BH, Hashmi SS, Ahmad W, et al. The current trends in the green syntheses of titanium oxide nanoparticles and their applications. Green Chemistry Letters and Reviews. 2018;11(4):492-502. doi: 10.1080/17518253.2018.1538430.

Nadeem M, Abbasi BH, Younas M, Ahmad W, Khan T. A review of the green syntheses and anti-microbial applications of gold nanoparticles. Green Chemistry Letters and Reviews. 2017;10(4):216-27. doi: 10.1080/17518253.2017.1349192.

Krishnadhas L, Santhi R, Annapurani S. Green Synthesis of Silver Nanoparticles from the Leaf Extract of Volkameriainermis. International Journal of Pharmaceutical and Clinical Research. 2017;9. doi: 10.25258/ijpcr.v9i08.9587.36.

Maensiri S, Labuayai S, Laokul P, Klinkaewnarong J, Swatsitang E. Structure and optical properties of CeO2nanoparticles prepared by using lemongrass plant extract solution. Japanese Journal of Applied Physics. 2014;53(6S):06JG14. doi: 10.7567/jjap.53.06jg14.

Miri A, Sarani M. Biosynthesis, characterization and cytotoxic activity of CeO2 nanoparticles. Ceramics International. 2018;44(11):12642-7.

Qian J, Chen F, Zhao X, Chen Z. China rose petal as biotemplate to produce two-dimensional ceria nanosheets. Journal of Nanoparticle Research. 2011;13(12):7149-58.

Malleshappa J, Bhushana N, S Chandra P, Sharma S, Dhananjaya N, Shivakumara C. Eco-friendly green synthesis, structural and photoluminescent studies of CeO2:Eu3+ nanophosphors using E. tirucalli plant latex. Journal of Alloys and Compounds. 2014;612:425-34. doi: 10.1016/j.jallcom.2014.05.101.

Sharma JK, Srivastava P, Ameen S, Akhtar MS, Sengupta S, Singh G. Phytoconstituents assisted green synthesis of cerium oxide nanoparticles for thermal decomposition and dye remediation. Materials Research Bulletin. 2017;91:98-107.

Nadeem M, Khan R, Afridi K, Nadhman A, Ullah S, Faisal S, et al. Green Synthesis of Cerium Oxide Nanoparticles (CeO(2) NPs) and Their Antimicrobial Applications: A Review. International journal of nanomedicine. 2020;15:5951-61. doi: 10.2147/ijn.s255784.

Priya GS, Kanneganti A, Kumar KA, Rao KV, Bykkam S. Biosynthesis of cerium oxide nanoparticles using Aloe barbadensis miller gel. Int J Sci Res Publ. 2014;4(6):199-224.

Zamani A, Marjani AP, Alimoradlu K. Walnut shell-templated ceria nanoparticles: green synthesis, characterization, and catalytic application. International Journal of Nanoscience. 2018;17(06):1850008.

Reddy Yadav L, Manjunath K, Archana B, Madhu C, Raja Naika H, Nagabhushana H, et al. Fruit juice extract mediated synthesis of CeO2 nanoparticles for antibacterial and photocatalytic activities. The European Physical Journal Plus. 2016;131(5):1-10.

Rajan AR, Rajan A, John A, Philip D, editors. Green synthesis of CeO2 nanostructures by using Morus nigra fruit extract and its antidiabetic activity. AIP Conference Proceedings; 2019: AIP Publishing LLC.

Aseyd Nezhad S, E" haghi A, Tabrizi MH. Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization, and biological activities. Applied Organometallic Chemistry. 2019;34:5314.

Singh A, Hussain I, Singh NB, Singh H. Uptake, translocation and impact of green synthesized nanoceria on growth and antioxidant enzymes activity of Solanum lycopersicum L. Ecotoxicology and environmental safety. 2019;182:109410. doi: 10.1016/j.ecoenv.2019.109410.

Irshad MS, Aziz MH, Fatima M, Rehman SU, Idrees M, Rana S, et al. Green synthesis, cytotoxicity, antioxidant and photocatalytic activity of CeO2 nanoparticles mediated via orange peel extract (OPE). Materials Research Express. 2019;6(9):0950a4.

Srikar S, Giri D, Pal DB, Mishra P, Upadhyay S. Green Synthesis of Silver Nanoparticles: A Review. Green and Sustainable Chemistry. 2016;06:34-56. doi: 10.4236/gsc.2016.61004.

Fatma S, Kalainila P, Ramaswami Sachidanandan ER, Renganathan S. Green synthesis of copper nanoparticle from Passiflora foetida leaf extract and its antibacterial activity. Asian Journal of Pharmaceutical and Clinical Research. 2017;10:79-83. doi: 10.22159/ajpcr.2017.v10i4.15744.

Subbiah M, Bhuvaneswari S, Vajiravelu S. Green synthesis, characterization of silver nanoparticles of a marine red alga spyridia fusiformis and their antibacterial activity. International Journal of Pharmacy and Pharmaceutical Sciences. 2017;9:192. doi: 10.22159/ijpps.2017v9i5.17105.

Pertiwi R, Suwaldi, Setyowati E, Martien R. Bio-nanoparticles: Green synthesis of gold nanoparticles and assessment of biological evaluation. International Journal of Applied Pharmaceutics. 2019:133-8. doi: 10.22159/ijap.2019v11i6.34826.

Patil S, Sivaraj R, Raju R. Green synthesis of silver nanoparticle from leaf extract of aegle marmelos and evaluation of its antibacterial activity. International Journal of Pharmacy and Pharmaceutical Sciences. 2015;7:169-73.

Saitawadekar A, Kakde UB. Green synthesis of copper nanoparticles using aspergillus flavus. Journal of Critical Reviews. 2020;7(16):1083-90.

Nadaroglu H, Onem H, Alayli Gungor A. Green synthesis of Ce(2)O(3) NPs and determination of its antioxidant activity. IET nanobiotechnology. 2017;11(4):411-9. doi: 10.1049/iet-nbt.2016.0138.

Khan SA, Ahmad A. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Materials Research Bulletin. 2013;48(10):4134-8.

Munusamy S, Bhakyaraj K, Vijayalakshmi L, Stephen A, Narayanan V. Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties. Int J Innov Res Sci Eng. 2014;2(1):318.

Venkatesh K, Gopinath K, Palani N, Arumugam A, Jose SP, Bahadur SA, et al. Plant pathogenic fungus F. solani mediated biosynthesis of nanoceria: antibacterial and antibiofilm activity. RSC advances. 2016;6(48):42720-9.

Khandel P, Yadaw RK, Soni DK, Kanwar L, Shahi SK. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. Journal of Nanostructure in Chemistry. 2018;8(3):217-54.

Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, et al. Secondary Metabolites in the Green Synthesis of Metallic Nanoparticles. Materials (Basel, Switzerland). 2018;11(6). doi: 10.3390/ma11060940.

Vijayakumar G, Kesavan H, Kannan A, Arulanandam D, Kim JH, Kim KJ, et al. Phytosynthesis of Copper Nanoparticles Using Extracts of Spices and Their Antibacterial Properties. Processes. 2021;9(8). doi: 10.3390/pr9081341.

Darroudi M, Hoseini SJ, Oskuee RK, Hosseini HA, Gholami L, Gerayli S. Food-directed synthesis of cerium oxide nanoparticles and their neurotoxicity effects. Ceramics International. 2014;40(5):7425-30.

Kargar H, Ghasemi F, Darroudi M. Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays. Ceramics International. 2015;41(1):1589-94.

Alpaslan E, Yazici H, Golshan NH, Ziemer KS, Webster TJ. pH-Dependent Activity of Dextran-Coated Cerium Oxide Nanoparticles on Prohibiting Osteosarcoma Cell Proliferation. ACS biomaterials science & engineering. 2015;1(11):1096-103. doi: 10.1021/acsbiomaterials.5b00194.

Qi L, Fresnais J, Muller P, Theodoly O, Berret JF, Chapel JP. Interfacial Activity of Phosphonated-PEG Functionalized Cerium Oxide Nanoparticles. Langmuir: the ACS journal of surfaces and colloids. 2012;28(31):11448-56. doi: 10.1021/la302173g.

Fang X, Song H. Synthesis of cerium oxide nanoparticles loaded on chitosan for enhanced auto-catalytic regenerative ability and biocompatibility for the spinal cord injury repair. J Photochem Photobiol B. 2019 Feb;191:83-87. doi: 10.1016/j.jphotobiol.2018.11.016.

Patil SN, Paradeshi JS, Chaudhari PB, Mishra SJ, Chaudhari BL. Bio-therapeutic Potential and Cytotoxicity Assessment of Pectin-Mediated Synthesized Nanostructured Cerium Oxide. Applied biochemistry and biotechnology. 2016;180(4):638-54. doi: 10.1007/s12010-016-2121-9.

Ahmed HE, Iqbal Y, Aziz MH, Atif M, Batool Z, Hanif A, et al. Green Synthesis of CeO(2) Nanoparticles from the Abelmoschus esculentus Extract: Evaluation of Antioxidant, Anticancer, Antibacterial, and Wound-Healing Activities. Molecules (Basel, Switzerland). 2021;26(15). doi: 10.3390/molecules26154659.

Arumugam A, Karthikeyan C, Haja Hameed AS, Gopinath K, Gowri S, Karthika V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical, and antibacterial properties. Materials science & engineering C, Materials for biological applications. 2015;49:408-15. doi: 10.1016/j.msec.2015.01.042.

Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nature reviews Neuroscience. 2008;9(7):505-18. doi: 10.1038/nrn2417.

Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxidative medicine and cellular longevity. 2012;2012:428010. doi: 10.1155/2012/428010.

Shukla V, Mishra SK, Pant HC. Oxidative stress in neurodegeneration. Advances in pharmacological sciences. 2011;2011:572634. doi: 10.1155/2011/572634.

Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi pharmaceutical journal: SPJ: the official publication of the Saudi Pharmaceutical Society. 2016;24(4):473-84. doi: 10.1016/j.jsps.2014.11.013.

Nourmohamadi E, kazemi oskuee R, Hasanzadeh L, Mohajeri M, Hashemzadeh A, Rezayi M, et al. Cytotoxic activity of greener synthesis of cerium oxide nanoparticles using Carrageenan towards a WEHI 164 cancer cell line. Ceramics International. 2018;44. doi: 10.1016/j.ceramint.2018.07.201.

Dowding JM, Dosani T, Kumar A, Seal S, Self WT. Cerium oxide nanoparticles scavenge nitric oxide radical (˙NO). Chemical communications (Cambridge, England). 2012;48(40):4896-8. doi: 10.1039/c2cc30485f.

Pinna A, Malfatti L, Galleri G, Manetti R, Cossu S, Rocchitta G, et al. Ceria nanoparticles for the treatment of Parkinson-like diseases induced by chronic manganese intoxication. RSC Advances. 2015;5(26):20432-9. doi: 10.1039/C4RA16265J.

Machtoub L, Kasugai Y. Amyotrophic Lateral Sclerosis: Advances and Perspectives of Neuronanomedicine. 2016. doi: https://doi.org/10.1201/b15632.

Khan SS, Ullah I, Ullah S, An R, Xu H, Nie K, et al. Recent Advances in the Surface Functionalization of Nanomaterials for Antimicrobial Applications. Materials (Basel, Switzerland). 2021;14(22). doi: 10.3390/ma14226932.

Ai T, Wang F, Feng X, Ruan M. Microstructural and mechanical properties of dual Ti(3)A1C(2) -Ti2AlC reinforced TiAl composites fabricated by reaction hot pressing. Ceramics International. 2014;40:9947-53. doi: 10.1016/j.ceramint.2014.02.092.

Sebastiammal S, A.Mariappan, K.Neyvasagam, Lesly Fathima A. Annona MuricataInspired Synthesis of CeO2 Nanoparticles and their Antimicrobial Activity. MaterialsToday:Proceedings.2019;9:627-32.sdoi: https://doi.org/10.1016/j.matpr.2018.10.385.

Paiva CN, Bozza MT. Are reactive oxygen species always detrimental to pathogens? Antioxidants & redox signaling. 2014;20(6):1000-37. doi: 10.1089/ars.2013.5447.

Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine. 2017;12:1227-49. doi: 10.2147/ijn.s121956.

Estevez AY, Pritchard S, Harper K, Aston JW, Lynch A, Lucky JJ, et al. Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free radical biology & medicine. 2011;51(6):1155-63. doi: 10.1016/j.freeradbiomed.2011.06.006.

Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clinical microbiology reviews. 2013;26(2):185-230. doi: 10.1128/cmr.00059-12.

Pop OL, Mesaros A, Vodnar DC, Suharoschi R, Tăbăran F, Magerușan L, et al. Cerium Oxide Nanoparticles and Their Efficient Antibacterial Application In Vitro against Gram-Positive and Gram-Negative Pathogens. Nanomaterials (Basel, Switzerland). 2020;10(8). doi: 10.3390/nano10081614.

Heckman KL, DeCoteau W, Estevez A, Reed KJ, Costanzo W, Sanford D, et al. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS nano. 2013;7(12):10582-96. doi: 10.1021/nn403743b.

Es-haghi A, Nezhad S. The Anti-oxidant and Anti-inflammatory Properties of Cerium Oxide Nanoparticles Synthesized Using Origanum majorana L. Leaf Extract. International Journal of Basic Science in Medicine. 2019;4:108-12. doi: 10.15171/ijbsm.2019.20.

Miller JH, Das V. Potential for Treatment of Neurodegenerative Diseases with Natural Products or Synthetic Compounds that Stabilize Microtubules. Curr Pharm Des. 2020;26(35):4362-4372. doi: 10.2174/1381612826666200621171302.

Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. Npg Asia Materials. 2014;6.

Graham UM, Tseng MT, Jasinski JB, Yokel RA, Unrine JM, Davis BH, et al. In Vivo Processing of Ceria Nanoparticles inside Liver: Impact on Free-Radical Scavenging Activity and Oxidative Stress. ChemPlusChem. 2014;79(8):1083-8. doi: 10.1002/cplu.201402080.

Dan M, Tseng MT, Wu P, Unrine JM, Grulke EA, Yokel RA. Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial. International journal of nanomedicine. 2012;7:4023-36. doi: 10.2147/ijn.s32526.

Kumari M, Singh SP, Chinde S, Rahman MF, Mahboob M, Grover P. Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells. International journal of toxicology. 2014;33(2):86-94. doi: 10.1177/1091581814522305.

Mittal S, Pandey AK. Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. BioMed research international. 2014;2014:891934. doi: 10.1155/2014/891934.

Pal PK, Netravathi M. Management of neurodegenerative disorders: Parkinson's disease and Alzheimer's disease. J Indian Med Assoc. 2005 Mar;103(3):168-70, 172, 174-6

You G, Hou J, Xu Y, Miao L, Ao Y, Xing B. Surface Properties and Environmental Transformations Controlling the Bioaccumulation and Toxicity of Cerium Oxide Nanoparticles: A Critical Review. Rev Environ Contam Toxicol. 2021;253:155-206. doi: 10.1007/398_2020_42.

Babu KS, Anandkumar M, Tsai TY, Kao TH, Inbaraj BS, Chen BH. Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles. International journal of nanomedicine. 2014;9:5515-31. doi: 10.2147/ijn.s70087.

Arnold MC, Badireddy AR, Wiesner MR, Di Giulio RT, Meyer JN. Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. Archives of environmental contamination and toxicology. 2013;65(2):224-33. doi: 10.1007/s00244-013-9905-5.

Wu J, Ma Y, Ding Y, Zhang P, He X, Zhang Z. Toxicity of international journal published in association with BIBRA. 2017;38:136-41. doi: 10.1016/j.tiv.2016.09.022.

CP Chandrappa, N Chandrasekar, M Govindappa, Chaitra Shanbhag, Uttam Kumar Singh, Jayashri Masarghal. Antibacterial activity of synthesized silver nanoparticles by Simaroubaglauca against pathogenic bacteria. Int J Curr Pharm Res 2017;9(4):19-22.

Published

14-04-2022

How to Cite

SRIRAMCHARAN, P., NATARAJAN, J., RAMAN, R., NAGARAJU, G., JUSTIN, A., & SENTHIL, V. (2022). A REVIEW ON GREEN-SYNTHESIS OF CERIUM OXIDE NANOPARTICLES: FOCUS ON CENTRAL NERVOUS SYSTEM DISORDERS. International Journal of Applied Pharmaceutics, 14(4). https://doi.org/10.22159/ijap.2022v14i4.44487

Issue

Section

Review Article(s)