ANALYSIS OF POLYSORBATE 80 SOLUTION STABILITY UNDER STRESS CONDITIONS TO ENSURE ITS QUALITY AS A BIOPHARMACEUTICAL EXCIPIENT

Authors

  • ZHUAN CHENG WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, China, 200131 https://orcid.org/0000-0003-4866-8766
  • XIAOHUI WANG WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, China, 200131 https://orcid.org/0000-0002-2736-8679
  • QUANMIN CHEN WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, China, 200131
  • JEREMY GUO WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, China, 200131 https://orcid.org/0000-0002-2497-9642

DOI:

https://doi.org/10.22159/ijap.2022v14i4.44708

Keywords:

High-performance/pressure liquid chromatography, Surfactants, Excipients, Stability, Oxidation, Hydrolysis, Degradation products

Abstract

Objective: This study aimed to investigated the effect of light, temperature, pH, peroxides, trace metals, and buffer type on the chemical stability of polysorbate 80 (PS80) obtained from the three key manufactures.

Methods: We used a fast liquid chromatography-evaporative light scattering detector that allowed the monitoring of PS80 decay over time. For data analysis, we investigated the change in the peak area percentage of the compound over time.

Results: At pH 6.0 in histidine buffer, PS80-B was more sensitive than PS80-A and PS80-C. The PS80 from the three different sources degraded significantly with varying performance levels when exposed to light, temperature of 40 °C, peroxides, and trace metals over time.

Conclusion: Our results provide an improved understanding of the stability of PS80 obtained from the three different sources under different conditions, which provides a basis for the selection of the appropriate grade of PS80 according to the specific requirements.

Downloads

Download data is not yet available.

References

Pawestri SA, Saifullah Sulaiman TN. The influence of variation of hydroxypropyl methylcellulose and tween 80 concentrations on physical characteristics and physical stabilities gel of water dry extract of temulawak. Int J Curr Pharm Sci 2019;11:44-8. doi: 10.22159/ijcpr.2019v11i6.36340.

Yati K, Srifiana Y, Putra F. Effect of optimization of tween 80 and propylene glycol as a surfactant and cosurfactant on the physical properties of aspirin microemulsion. Int J App Pharm. 2017;9:127-9. doi: 10.22159/ijap.2017.v9s1.71_78.

Arianto A, Amelia R, Bangun H. The effect of tween 80, palm kernel oil, and its conversion product on in vitro penetration enhancement of indomethacin through rabbit skin. Asian J Pharm Clin Res. 2017;10(7):284-8. doi: 10.22159/ ajpcr.2017.v10i7.18608.

Chen B, Bautista R, Yu K, Zapata GA, Mulkerrin MG, Chamow SM. Influence of histidine on the stability and physical properties of a fully human antibody in aqueous and solid forms. Pharm Res. 2003;20(12):1952-60. doi: 10.1023/b:pham.0000008042.15988.c0, PMID 14725359.

Miskoski S, Garcia NA. Influence of the peptide bond on the singlet molecular oxygen-mediated (O2[1 delta g]) photooxidation of histidine and methionine dipeptides. A kinetic study. Photochem Photobiol. 1993;57(3):447-52. doi: 10.1111/j.1751-1097.1993.tb02317.x, PMID 8475178.

Ng DSH, Che Rose L, Suhaimi H, Mohamad H, Rozaini MZH, Taib M. Preliminary evaluation on the antibacterial activities of citrus Hystrix oil emulsions stabilized by tween 80 and span 80. Int J Pharm Sci. 2011;3:209-11.

USA Pharmacopoeia Convention. United States Pharmacopeia and national formulary. Rockville, MD: United States pharmacopeial convention; 2018.

Pharmaceutical and Medical Devices Agency. Japanese pharmacopoeia. 17th ed. Tokyo: Pharmacopoeia and Medical Devices Agency; 2017.

Chinese Pharmacopoeia Commission. Chinese pharmacopoeia. 10th ed. Beijing, China: China Medical Science Press; 2015.

Kranz W, Wuchner K, Corradini E, Berger M, Hawe A. Factors influencing polysorbate’s Sensitivity against enzymatic hydrolysis and oxidative degradation. J Pharm Sci. 2019;108(6):2022-32. doi: 10.1016/j.xphs.2019.01.006, PMID 30639738.

Dwivedi M, Blech M, Presser I, Garidel P. Polysorbate degradation in biotherapeutic formulations: identification and discussion of current root causes. Int J Pharm. 2018;552(1-2):422-36. doi: 10.1016/j.ijpharm.2018.10.008, PMID 30300706.

Bhaskar A, Mukhopadhyay K, Kumar M. Effect of polysorbate–80 concentration on G–CSF formulation using liquid chromatography. Int J Pharm Sci. 2014;6:299-302.

Hewitt D, Alvarez M, Robinson K, Ji JY, Wang YJ, Kao YH. Mixed-mode and reversed-phase liquid chromatography-tandem mass spectrometry methodologies to study composition and base hydrolysis of polysorbate 20 and 80. J Chromatogr A. 2011;1218(15):2138-45. doi: 10.1016/j.chroma.2010.09.057, PMID 20950816.

Li Y, Hewitt D, Lentz YK, Ji JA, Zhang TY, Zhang K. Characterization and stability study of polysorbate 20 in therapeutic monoclonal antibody formulation by multidimensional ultrahigh-performance liquid chromatography-charged aerosol detection-mass spectrometry. Anal Chem. 2014;86(10):5150-7. doi: 10.1021/ac5009628, PMID 24749737.

McShan AC, Kei P, Ji JA, Kim DC, Wang YJ. Hydrolysis of polysorbate 20 and 80 by a range of carboxylester hydrolases. PDA J Pharm Sci Technol. 2016;70(4):332-45. doi: 10.5731/pdajpst.2015.005942, PMID 27020650.

Hewitt D, Zhang T, Kao YH. Quantitation of polysorbate 20 in protein solutions using mixed-mode chromatography and evaporative light scattering detection. J Chromatogr A. 2008;1215(1-2):156-60. doi: 10.1016/j.chroma.2008.11.017, PMID 19036378.

Donbrow M, Azaz E, Pillersdorf A. Autoxidation of polysorbates. J Pharm Sci. 1978;67(12):1676-81. doi: 10.1002/jps.2600671211, PMID 31449.

Zhang L, Yadav S, John Wang YJ, Mozziconacci O, Schӧneich C. Dual effect of histidine on polysorbate 20 stability: mechanistic studies. Pharm Res. 2018;35(2):33. doi: 10.1007/s11095-017-2321-1, PMID 29368235.

Frankel EN. Lipid oxidation: Mechanisms, products and biological significance. J Am Oil Chem Soc. 1984;61(12):1908-17. doi: 10.1007/BF02540830.

Wolff SP. Ferrous ion oxidation in the presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol. 1994;233:182-89. doi: 10.1016/S0076-6879(94)33021-2.

Kishore RSK, Pappenberger A, Dauphin IB, Ross A, Buergi B, Staempfli A. Degradation of polysorbates 20 and 80: studies on thermal autoxidation and hydrolysis. J Pharm Sci. 2011;100(2):721-31. doi: 10.1002/jps.22290, PMID 20803573.

Ha E, Wang W, Wang YJ. Peroxide formation in polysorbate 80 and protein stability. J Pharm Sci. 2002;91(10):2252-64. doi: 10.1002/jps.10216, PMID 12226852.

Wang TT, Markham A, Thomas SJ, Wang N, Huang LH, Clemens M. Solution stability of Poloxamer 188 under stress conditions. J Pharm Sci. 2019;108(3):1264-71. doi: 10.1016/ j.xphs.2018.10.057, PMID 30419275.

Stadtman ER. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem. 1993;62:797-821. doi: 10.1146/annurev.bi.62.070193.004053, PMID 8352601.

Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC. Role of buffers in protein formulations. J Pharm Sci. 2017;106(3):713-33. doi: 10.1016/j.xphs.2016.11.014, PMID 27894967.

Schmidt A, Koulov A, Huwyler J, Mahler HC, Jahn M. Stabilizing polysorbate 20 and 80 against oxidative degradation. J Pharm Sci. 2020;109(6):1924-32. doi: 10.1016/j.xphs.2020.03.003, PMID 32171713.

Neuberger A. The reaction between histidine and formaldehyde. Biochem J. 1944;38(4):309-14. doi: 10.1042/bj0380309, PMID 16747801.

Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97(8):2924-35. doi: 10.1002/jps.21190, PMID 17973307.

Kishore RSK, Kiese S, Fischer S, Pappenberger A, Grauschopf U, Mahler HC. The degradation of polysorbates 20 and 80 and its potential impact on the stability of biotherapeutics. Pharm Res. 2011;28(5):1194-210. doi: 10.1007/s11095-011-0385-x, PMID 21369824.

Borisov OV, Ji JA, Wang YJ. Oxidative degradation of polysorbate surfactants studied by liquid chromatography-mass spectrometry. J Pharm Sci. 2015;104(3):1005-18. doi: 10.1002/jps.24314, PMID 25581232.

Zhang L, Yadav S, Demeule B, Wang YJ, Mozziconacci O, Schӧneich C. Degradation mechanisms of polysorbate 20 differentiated by 18o-labeling and mass spectrometry. Pharm Res. 2017;34(1):84-100. doi: 10.1007/s11095-016-2041-y, PMID 27738952.

Yao J, Dokuru DK, Noestheden M, Park SS, Kerwin BA, Jona J. A quantitative kinetic study of polysorbate autoxidation: the role of unsaturated fatty acid ester substituents. Pharm Res. 2009;26(10):2303-13. doi: 10.1007/s11095-009-9946-7, PMID 19669100.

Bates TR, Nightingale CH, Dixon E. Kinetics of hydrolysis of polyoxyethylene (20) sorbitan fatty acid ester surfactants. J Pharm Pharmacol. 1973;25(6):470-77. doi: 10.1111/j.2042-7158.1973.tb09135.x, PMID 4146586.

Singh SR, Zhang JM, O’Dell C, Hsieh MC, Goldstein J, Liu J. Effect of polysorbate 80 quality on the photostability of a monoclonal antibody. AAPS PharmSciTech. 2012;13(2):422-30. doi: 10.1208/s12249-012-9759-6.

Martos A, Koch W, Jiskoot W, Wuchner K, Winter G, Friess W. Trends on analytical characterization of polysorbates and their degradation products in biopharmaceutical formulations. J Pharm Sci. 2017;106(7):1722-35. doi: 10.1016/j.xphs.2017.03.001, PMID 28302541.

Siska CC, Pierini CJ, Lau HR, Latypov RF, Fesinmeyer RM, Litowski JR. Free fatty acid particles in protein formulations, part 2: contribution of polysorbate raw material. J Pharm Sci. 2015;104(2):447-56. doi: 10.1002/jps.24144, PMID 25196966.

Published

07-07-2022

How to Cite

CHENG, Z., WANG, X., CHEN, Q., & GUO, J. (2022). ANALYSIS OF POLYSORBATE 80 SOLUTION STABILITY UNDER STRESS CONDITIONS TO ENSURE ITS QUALITY AS A BIOPHARMACEUTICAL EXCIPIENT. International Journal of Applied Pharmaceutics, 14(4), 205–212. https://doi.org/10.22159/ijap.2022v14i4.44708

Issue

Section

Original Article(s)