PROTEOMIC STUDY OF CARBAPENEM-RESISTANT K. PNEUMONIAE CLINICAL ISOLATES

Authors

  • VETRISELVI SUBRAMANIYAN Department of Microbiology, School of Life Sciences, Vels Institute of Science, Technology, and Advanced Studies (VISTAS), Pallavaram, Chennai, 600 117 Tamil Nadu, India
  • SURESH DHANARAJ Department of Microbiology, School of Life Sciences, Vels Institute of Science, Technology, and Advanced Studies (VISTAS), Pallavaram, Chennai, 600 117 Tamil Nadu, India

Keywords:

K. pneumoniae, carbapenem resistance, uropathogens, Proteomics

Abstract

Objective:

Now it's a worldwide issue that carbapenem resistance is spreading. This has made K. pneumoniae infections more difficult to treat. All Klebsiella pneumonia's proteins were examined in this study, which focused on the carbapenem-resistant bacteria's response to meropenem.

Materials and Methods:

Proteomics (MALDI-TOF) and bioinformatics methods were combined to answer the new enigma of resistance. Functional annotation, pathway enrichment and protein–protein interaction were some of the uses of this data. Both KEGG and STRING played an important role (PPI).

Results:

Proteins that help synthesise DNA and RNA, proteins that aid in carbapenem degradation, and proteins that aid energy and intermediate metabolism are all subdivided into two classes.

Conclusion:

 Bacterial survival and meropenem resistance may have been aided by four overexpressed proteins and their partners. A new anti-resistance medication based on these proteins could help restrict the growth of "bad bugs."

Downloads

Download data is not yet available.

References

Endimiani A, Hujer AM, Perez F, Bethel CR, Hujer KM, Kroeger J, Oethinger M, Paterson DL, Adams MD, Jacobs MR, Diekema DJ, Hall GS, Jenkins SG, Rice LB, Tenover FC, Bonomo RA. Characterization of blaKPC-containing Klebsiella pneumoniae isolates detected in different institutions in the Eastern USA. J Antimicrob Chemother. 2009 Mar;63(3):427-37. doi: 10.1093/jac/dkn547. Epub 2009 Jan 20. PMID: 19155227; PMCID: PMC2640158.

Bratu S, Landman D, Haag R, Recco R, Eramo A, Alam M, Quale J. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med. 2005 Jun 27;165(12):1430-5. doi: 10.1001/archinte.165.12.1430. PMID: 15983294.

Martínez-Martínez L, Pascual A, Hernández-Allés S, Alvarez-Díaz D, Suárez AI, Tran J, Benedí VJ, Jacoby GA. Roles of beta-lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae. Antimicrob Agents Chemother. 1999 Jul;43(7):1669-73. doi: 10.1128/AAC.43.7.1669. PMID: 10390220; PMCID: PMC89341.

Jacoby GA, Mills DM, Chow N. Role of beta-lactamases and porins in resistance to ertapenem and other beta-lactams in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004 Aug;48(8):3203-6. doi: 10.1128/AAC.48.8.3203-3206.2004. PMID: 15273152; PMCID: PMC478483.

Freiberg C, Brötz-Oesterhelt H, Labischinski H. The impact of transcriptome and proteome analyses on antibiotic drug discovery. Curr Opin Microbiol. 2004 Oct;7(5):451-9. doi: 10.1016/j.mib.2004.08.010. PMID: 15451499.

Hessling B, Bonn F, Otto A, Herbst FA, Rappen GM, Bernhardt J, Hecker M, Becher D. Global proteome analysis of vancomycin stress in Staphylococcus aureus. Int J Med Microbiol. 2013 Dec;303(8):624-34. doi: 10.1016/j.ijmm.2013.08.014. Epub 2013 Sep 13. PMID: 24161710.

dos Santos KV, Diniz CG, Veloso Lde C, de Andrade HM, Giusta Mda S, Pires Sda F, Santos AV, Apolônio AC, de Carvalho MA, Farias Lde M. Proteomic analysis of Escherichia coli with experimentally induced resistance to piperacillin/tazobactam. Res Microbiol. 2010 May;161(4):268-75. doi: 10.1016/j.resmic.2010.03.006. Epub 2010 Apr 8. PMID: 20381611.

Rangarajan.N, Sangeetha.R, Mohanasundaram.S, Sampath.V, Pokodi.K, Dass Prakash MV. Additive inhibitory effect of the peels of Citrus limon and Citrus sinensis against amylase and glucosidase activity. Int. J. Res. Pharm. Sci., 2020;11(4), 6876-6880.

Lata M, Sharma D, Deo N, Tiwari PK, Bisht D, Venkatesan K. Proteomic analysis of ofloxacin-mono resistant Mycobacterium tuberculosis isolates. J Proteomics. 2015 Sep 8;127(Pt A):114-21. doi: 10.1016/j.jprot.2015.07.031. Epub 2015 Aug 1. PMID: 26238929.

Wayne PA. Performance standards for antimicrobial susceptibility testing: 24 informational supplement. CLSI M100 (2014) S24.

Qayyum S, Sharma D, Bisht D, Khan AU. Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis: A proteomic approach. Biochem Biophys Res Commun. 2016 Jun 10;474(4):652-659. doi: 10.1016/j.bbrc.2016.04.145. Epub 2016 May 1. PMID: 27144316.

Mohanasundaram S, Victor Arokia Doss, Prasad Maddisetty, Magesh R, Sivakumar K and Subathra M. Pharmacological analysis of hydroethanolic extract of Senna alata (L.) for in vitro free radical scavenging and cytotoxic activities against HepG2 cancer cell line. Pak. J. Pharm. Sci., 2019; 32(3):931-934.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54. doi: 10.1006/abio.1976.9999. PMID: 942051.

Sharma D, Lata M, Faheem M, Khan AU, Joshi B, Venkatesan K, Shukla S, Bisht D. M. tuberculosis ferritin (Rv3841): Potential involvement in Amikacin (AK) & Kanamycin (KM) resistance. Biochem Biophys Res Commun. 2016 Sep 16;478(2):908-12. doi: 10.1016/j.bbrc.2016.08.049. Epub 2016 Aug 10. PMID: 27521892.

Sharma D, Khan AU. Role of cell division protein divIVA in Enterococcus faecalis pathogenesis, biofilm and drug resistance: A future perspective by in silico approaches. Microb Pathog. 2018 Dec;125:361-365. doi: 10.1016/j.micpath.2018.10.001. Epub 2018 Oct 2. PMID: 30290265.

Doménech-Sánchez A, Benedí VJ, Martínez-Martínez L, Albertí S. Evaluation of differential gene expression in susceptible and resistant clinical isolates of Klebsiella pneumoniae by DNA microarray analysis. Clin Microbiol Infect. 2006 Sep;12(9):936-40. doi: 10.1111/j.1469-0691..01470.x. PMID: 16882305.

Susin MF, Baldini RL, Gueiros-Filho F, Gomes SL. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus. J Bacteriol. 2006 Dec;188(23):8044-53. doi: 10.1128/JB.00824-06. Epub 2006 Sep 15. PMID: 16980445; PMCID: PMC1698207.

Mohanasundaram.S, N.Rangarajan, V.Sampath, K.Porkodi, M.Pennarasi. GC-MS and HPLC analysis of Antiglycogenolytic and Glycogenic compounds in Kaempferol 3 – O – gentiobioside containing Senna alata L leaves in experimental rats. Translational Metabolic Syndrome Research., 2021; 4:10-17.

Bernal-Cabas M, Ayala JA, Raivio TL. The Cpx envelope stress response modifies peptidoglycan cross-linking via the L,D-transpeptidase LdtD and the novel protein YgaU. J Bacteriol. 2015 Feb;197(3):603-14. doi: 10.1128/JB.02449-14. Epub 2014 Nov 24. PMID: 25422305; PMCID: PMC4285979.

Delhaye A, Collet JF, Laloux G. Fine-Tuning of the Cpx Envelope Stress Response Is Required for Cell Wall Homeostasis in Escherichia coli. mBio. 2016 Feb 23;7(1):e00047-16. doi: 10.1128/mBio.00047-16. PMID: 26908573; PMCID: PMC4791840.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 Nov;13(11):2498-504. doi: 10.1101/gr.1239303. PMID: 14597658; PMCID: PMC403769.

Sivakumar S, Mohanasundaram S, Rangarajan N, Sampath V, Dass Prakash MV. In silico prediction of interactions and molecular dynamics simulation analysis of Mpro of Severe Acute Respiratory Syndrome caused by novel coronavirus 2 with the FDA-approved nonprotein antiviral drugs. J Appl Pharm Sci, 2022; 12(05):104–119

Published

21-06-2022

How to Cite

SUBRAMANIYAN, V., & DHANARAJ, S. (2022). PROTEOMIC STUDY OF CARBAPENEM-RESISTANT K. PNEUMONIAE CLINICAL ISOLATES. International Journal of Applied Pharmaceutics, 14. Retrieved from https://innovareacademics.in/journals/index.php/ijap/article/view/45527

Issue

Section

Original Article(s)