• SHABNAM SAYYAD Computer Science Engineering, Lincoln University College, Malaysia and Computer Engineering Department, AISSMSCOE Pune
  • DIVYA MIDHUNCHAKKARAVARTHY Faculty of Computer Science and Multimedia, Lincoln University College, Malaysia
  • FAROOK SAYYAD Dr D Y Patil School of Engineering, Pune, India



Alopecia areata, Hair loss, Deep learning, Machine learning, Feature extraction approaches


Lots of women all over the globe are affected by thinning hair, and the number of females suffering from the disease is growing per year. Another important component in the development of thinning hair is genetics. One of the most important goals is to make a clinical condition. For example, in the area of medicine, categorization is critical since one of the primary goals of the doctor is to determine whether or not a patient suffers from an illness. Alopecia areata is a kind of chronic illness that causes baldness in the affected region. AA may cause baldness for a variety of causes thus, testing may be essential to confirm if it is the source of the loss of hair. Machine learning approaches have shown promise in a variety of fields, including dermatology, and may be useful in identifying alopecia areata for better prediction and diagnosis. Proper detection of an illness is also influenced by the fluctuating character of illness signs. Deep learning algorithms for identifying hair loss levels in males using facial pictures in this research. In this situation, a special training database, including face photos with varying degrees of baldness, has been generated. Furthermore, despite the limited accessibility of hairs in such images, a matching approach for mechanically categorizing face images to design categorization tables of male baldness from the medical field is provided. The outcomes of the experiments demonstrate the potential and efficiency for medical, security, and business apps. Related work in machine learning for hair illness categorization has also been addressed. The main objective of this study to analyze several machine learning and deep learning strategies for the identification of alopecia as well as in humans, as well as to determine the accuracy of extracting features methodologies.


Download data is not yet available.


Safavi K. Prevalence of alopecia areata in the first national health and nutrition examination survey. Arch Dermatol. 1992;128(5):702. doi: 10.1001/archderm.1992.01680150136027, PMID 1575541.

Lai VWY, Chen G, Gin D, Sinclair R. Systemic treatments for alopecia areata: A systematic review. Australas J Dermatol. 2019 Feb;60(1):e1-e13. doi: 10.1111/ajd.12913. PMID 30191561.

Rattananukrom T, Suchonwanit P. Are drug treatment strategies really effective against alopecia areata? Expert Opin Pharmacother. 2021 Feb;22(3):257-60. doi: 10.1080/14656566.2020.1854728. PMID 33280456.

Trüeb RM, Dias MFRG. Alopecia areata: a comprehensive review of pathogenesis and management. Clin Rev Allergy Immunol. 2018 Feb;54(1):68-87. doi: 10.1007/s12016-017-8620-9, PMID 28717940.

Sadick NS. New-generation therapies for the treatment of hair loss in men. Dermatol Clin. 2018 Jan;36(1):63-7. doi: 10.1016/j.det.2017.08.003, PMID 29108548. PMID 29108548.

Alshahrani AA, Al-Tuwaijri R, Abuoliat ZA, Alyabsi M, AlJasser MI, Alkhodair R. Prevalence and clinical characteristics of alopecia areata at a tertiary care center in Saudi Arabia. Dermatol Res Pract. 2020 Mar 13;2020:7194270. doi: 10.1155/2020/7194270, PMID 32231700, PMCID PMC7093899.

Sterkens A, Lambert J, Bervoets A. Alopecia areata: a review on diagnosis, immunological etiopathogenesis and treatment options. Clin Exp Med. 2021 May;21(2):215-30. doi: 10.1007/s10238-020-00673-w. PMID 33386567.

Simakou T, Butcher JP, Reid S, Henriquez FL. Alopecia areata: A multifactorial autoimmune condition. J Autoimmun. 2019 Mar;98:74-85. doi: 10.1016/j.jaut.2018.12.001. PMID 30558963.

Mohanasundaram S, Victor AD, Prasad M, Magesh R, Sivakumar K, Subathra M. Pharmacological analysis of a hydroethanolic extract of Senna alata (L.) for in vitro free radical scavenging and cytotoxic activities against Hep G2 cancer cell line. Pak J Pharm Sci. 2019;32(3):931-4.

Seo S, Park J. Trichoscopy of alopecia areata: hair loss feature extraction and computation using grid line selection and eigenvalue. Comput Math Methods Med. 2020 Sep 25;2020:6908018. doi: 10.1155/2020/6908018, PMID 33062040, PMCID PMC7533001.

Rajoo Y, Wong J, Cooper G, Raj IS, Castle DJ, Chong AH. The relationship between physical activity levels and symptoms of depression, anxiety and stress in individuals with alopecia Areata. BMC Psychol. 2019 Jul 23;7(1):48. doi: 10.1186/s40359-019-0324-x, PMID 31337438, PMCID PMC6651906.

Otlewska A, Otlewska A, Szpotowicz G. Alopecia areata. Pediatr Med Rodz. 2019;15(4):358-61. doi: 10.15557/PiMR.2019.0060.

Zonunsanga Z. Alopecia areata: medical treatments. Our Dermatol Online. 2015;6(1):86-91. doi: 10.7241/ourd.20151.20.

Ellis JA, Scurrah KJ, Cobb JE, Zaloumis SG, Duncan AE, Harrap SB. Baldness and the androgen receptor: the AR polyglycine repeat polymorphism does not confer susceptibility to androgenetic alopecia. Hum Genet. 2007 May;121(3-4):451-7. doi: 10.1007/s00439-006-0317-8. PMID 17256155.

Norwood OT. Male pattern baldness: classification and incidence. South Med J. 1975 Nov;68(11):1359-65. doi: 10.1097/00007611-197511000-00009, PMID 1188424.

Olsen EA, Messenger AG, Shapiro J, Bergfeld WF, Hordinsky MK, Roberts JL. Evaluation and treatment of male and female pattern hair loss. J Am Acad Dermatol. 2005 Feb;52(2):301-11. doi: 10.1016/j.jaad.2004.04.008. PMID 15692478.

Mohanasundaram S, Rangarajan N, Sampath V, Porkodi K, Prakash MVD, Monicka N. GC-MS identification of anti-inflammatory and anticancer metabolites in edible milky white mushroom (Calocybe indica) against human breast cancer (MCF-7) cells. Res J Pharm Technol. 2021;14(8):4300-6.

Tosi A, Misciali C, Piraccini BM, Peluso AM, Bardazzi F. Drug-induced hair loss and hair growth. Incidence, management and avoidance. Drug Saf. 1994 Apr;10(4):310-7. doi: 10.2165/00002018-199410040-00005, PMID 8018303.

Rushton DH, Norris MJ, Dover R, Busuttil N. Causes of hair loss and the developments in hair rejuvenation. Int J Cosmet Sci. 2002 Feb;24(1):17-23. doi: 10.1046/j.0412-5463.2001.00110.x. PMID 18498491.

Benhabiles H, Hammoudi K, Yang Z, Windal F, Melkemi M, Dornaika F. Deep learning-based detection of hair loss levels from facial images. IPTA. 2019;2019:1-6. doi: 10.1109/IPTA.2019.8936122.

Narendhiran S, Mohanasundaram S, Arun J, Saravanan L, Catherine L, Subathra M. Comparative study in larvicidal efficacy of medicinal plant extracts against Culex quinquefasciatus. Int J Res Plant Sci. 2014;4(1):22-5.

Sarker IH. Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput Sci. 2021;2(6):420. doi: 10.1007/s42979-021-00815-1. PMID 34426802, PMCID PMC8372231.

Sarker IH, Furhad MH, Nowrozy R. AI-driven cybersecurity: an overview, security intelligence modeling and research directions. SN Comput Sci. 2021;2(3):173. doi: 10.1007/s42979-021-00557-0.

Sarker IH. Machine learning: algorithms, real-world applications and research directions. SN Comput Sci. 2021;2(3):160. doi: 10.1007/s42979-021-00592-x. PMID 33778771, PMCID PMC7983091.

Sarker IH. Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. SN Comput Sci. 2021;2(5):377. doi: 10.1007/s42979-021-00765-8. PMID 34278328, PMCID PMC8274472.

Ligeza A. Artificial intelligence: a modern approach. Neurocomputing. 1995;9(2):215-8. doi: 10.1016/0925-2312(95)90020-9.

Lordo RA. Learning from data: concepts, theory, and methods. Technometrics. 2001;43(1):105-6. doi: 10.1198/tech.2001.s558.

Wang Q, Sivakumar K, Mohanasundaram S. Impacts of extrusion processing on food nutritional components. Int J Syst Assur Eng Manag. 2022;13(S1):364-74. doi: 10.1007/s13198-021-01422-2.

Adam B, Smith IF. Reinforcement learning for structural control. J Comput Civ Eng. 2008;22(2):133-9. doi: 10.1061/(ASCE)0887-3801(2008)22:2(133).

Victor AD, Mohanasundaram S, Prasad M. Analysis of hydroethanolic extract of Senna alata (L.) to screen bioactive compounds with inhibitory activity on lipid peroxidation, in vitro antibacterial and antidiabetic efficacy. Int J Pharm Sci. 2016;6(1):1360-6.

Bernardis E, Castelo Soccio L. Quantifying alopecia areata via texture analysis to automate the SALT score computation. J Investig Dermatol Symp Proc. 2018;19(1):S34-40. doi: 10.1016/j.jisp.2017.10.010, PMID 29273104.

Fabbrocini G, Cantelli M, Masarà A, Annunziata MC, Marasca C, Cacciapuoti S. Female pattern hair loss: a clinical, pathophysiologic, and therapeutic review. Int J Womens Dermatol. 2018 Jun 19;4(4):203-11. doi: 10.1016/j.ijwd.2018.05.001. PMID 30627618, PMCID PMC6322157.

Lee S, Lee JW, Choe SJ, Yang S, Koh SB, Ahn YS. Clinically applicable deep learning framework for the measurement of the extent of hair loss in patients with alopecia areata. JAMA Dermatol. 2020 Sep 1;156(9):1018-20. doi: 10.1001/jamadermatol.2020.2188, PMID 32785607, PMCID PMC7489853.

Kapoor I, Mishra A. Automated classification method for early diagnosis of alopecia using machine learning. Procedia Computer Science. 2018;132:437-43. doi: 10.1016/j.procs.2018.05.157.

Chang WJ, Chen LB, Chen MC, Chiu YC, Lin JY. ScalpEye: A deep learning-based scalp hair inspection and diagnosis system for scalp health. IEEE Access. 2020;8:134826-37. doi: 10.1109/ACCESS.2020.3010847.

Rai G, Naveen, Sharma S, Ansari A, Khanduja N, Rai G, Naveen, Sharma S, Ansari A, Khanduja N. An approach to detect alopecia areata hair disease using deep learning. Lecture Notes in Networks and Systems. 2021:775-83. doi: 10.1007/978-981-33-4501-0_71.



How to Cite




Review Article(s)