NANO CARRIER DRUG DELIVERY SYSTEMS FOR THE TREATMENT OF COGNITIVE DYSFUNCTION IN DEPRESSION- AN OVERVIEW ON THE NANO FORMULATIONS TARGETING TO THE BRAIN

Authors

  • JERIN JAMES Department of Pharmacology, SRM Medical college hospital & research centre, Kattankulathur, Tamilnadu, India
  • JAMUNA RANI Department of Pharmacology, SRM Medical college hospital & research centre, Kattankulathur, Tamilnadu, India
  • SATHYANARAYANAN VARADARAJAN Department of Pharmacology, SRM Medical college hospital & research centre, Kattankulathur, Tamilnadu, India

Keywords:

Major depressive disorder, Cognitive dysfunction, Nano drugs, Nano formulations, Nano carriers

Abstract

Aim

To review and discuss the current therapeutic strategies available for the management of cognitive dysfunction in major depressive disorder with special emphasis on novel therapeutics based on nanotechnology like Nano carrier delivery systems.

Method

The method entailed a review of research articles, review articles, and other internet-sourced materials. Journals, articles, and reports were thoroughly searched for the efficacy and safety of nanotechnology based newer drug delivery approaches for the management of cognitive dysfunction in major depressive disorder.

Results

The information obtained during the literature search aided in comprehending the scenario. Several new nanomedicines and nanotechnology based drug delivery systems for improving the efficacy of new and old drugs used for the management of cognitive dysfunction in major depressive disorder were reviewed.

Conclusion

There is a dearth of sufficient studies which focus on cognitive domain in depression. Nanomedicines and nanotechnology based drug delivery systems holds tremendous potential in the management of cognitive impairment in depression as well as other neuropsychiatric disorders. It is imperative to conduct advanced studies in this regard for better therapeutic outcomes in the management of such patients.

Downloads

Download data is not yet available.

References

Lam RW, Kennedy SH, Mclntyre RS, Khullar A. Cognitive dysfunction in major depressive disorder: effects on psychosocial functioning and implications for treatment. Can J Psychiatry. 2014 Dec;59(12):649-54. doi: 10.1177/070674371405901206. PMID: 25702365; PMCID: PMC4304584.

McIntyre RS, Xiao HX, Syeda K, Vinberg M, Carvalho AF, Mansur RB, Maruschak N, Cha DS. The prevalence, measurement, and treatment of the cognitive dimension/domain in major depressive disorder. CNS Drugs. 2015 Jul;29(7):577-89. doi: 10.1007/s40263-015-0263-x. PMID: 26290264.

Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology. 2012 Jan;62(1):63-77. doi: 10.1016/j.neuropharm.2011.07.036. Epub 2011 Aug 3. PMID: 21827775; PMCID: PMC3205453.

Gonda X, Pompili M, Serafini G, Carvalho AF, Rihmer Z, Dome P. The role of cognitive dysfunction in the symptoms and remission from depression. Ann Gen Psychiatry. 2015 Sep 22;14:27. doi: 10.1186/s12991-015-0068-9. PMID: 26396586; PMCID: PMC4578787.

Carvalho AF, Miskowiak KK, Hyphantis TN, Kohler CA, Alves GS, Bortolato B, G Sales PM, Machado-Vieira R, Berk M, McIntyre RS. Cognitive dysfunction in depression - pathophysiology and novel targets. CNS Neurol Disord Drug Targets. 2014;13(10):1819-35. doi: 10.2174/1871527313666141130203627. PMID: 25470397.

Moraros J, Nwankwo C, Patten SB, Mousseau DD. The association of antidepressant drug usage with cognitive impairment or dementia, including Alzheimer disease: A systematic review and meta-analysis. Depress Anxiety [Internet]. 2017 Mar 1 [cited 2022 Mar 16];34(3):217–26.

Vieta E, Sluth LB, Olsen CK. The effects of vortioxetine on cognitive dysfunction in patients with inadequate response to current antidepressants in major depressive disorder: A short-term, randomized, double-blind, exploratory study versus escitalopram. J Affect Disord. 2018 Feb;227:803-809. doi: 10.1016/j.jad.2017.11.053. Epub 2017 Nov 15. Erratum in: J Affect Disord. 2018 Aug 15;236:319. PMID: 29673132.

Mahableshwarkar AR, Zajecka J, Jacobson W, Chen Y, Keefe RSE. A Randomized, Placebo-Controlled, Active-Reference, Double-Blind, Flexible-Dose Study of the Efficacy of Vortioxetine on Cognitive Function in Major Depressive Disorder. Neuropsychopharmacol 2015 408 [Internet]. 2015 Feb 17 [cited 2022 Mar 4];40(8):2025–37.

Vieta E, Sluth LB, Olsen CK. The effects of vortioxetine on cognitive dysfunction in patients with inadequate response to current antidepressants in major depressive disorder: A short-term, randomized, double-blind, exploratory study versus escitalopram. J Affect Disord [Internet]. 2018 Feb 1 [cited 2022 Mar 4];227:803–9.

Katona C, Hansen T, Olsen CK. A randomized, double-blind, placebo-controlled, duloxetine-referenced, fixed-dose study comparing the efficacy and safety of Lu AA21004 in elderly patients with major depressive disorder. Int Clin Psychopharmacol [Internet]. 2012 Jul [cited 2022 Mar 4];27(4):215–23.

Areberg J, Søgaard B, Højer AM. The Clinical Pharmacokinetics of Lu AA21004 and its Major Metabolite in Healthy Young Volunteers. Basic Clin Pharmacol Toxicol [Internet]. 2012 Sep 1 [cited 2022 Mar 4];111(3):198–205.

Hvenegaard MG, Bang-Andersen B, Pedersen H, Jørgensen M, Püschl A, Dalgaard L. Identification of the cytochrome P450 and other enzymes involved in the in vitro oxidative metabolism of a novel antidepressant, Lu AA21004. Drug Metab Dispos [Internet]. 2012 Jul [cited 2022 Mar 4];40(7):1357–65.

Rakotoarisoa M, Angelov B, Garamus VM, Angelova A. Curcumin- and Fish Oil-Loaded Spongosome and Cubosome Nanoparticles with Neuroprotective Potential against H 2 O 2 -Induced Oxidative Stress in Differentiated Human SH-SY5Y Cells. ACS Omega [Internet]. 2019 Feb 12 [cited 2022 Mar 4];4(2):3061–73

Förster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol. 2008 Jul;130(1):55–70.

Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: An overview: Structure, regulation, and clinical implications. Neurobiol Dis. 2004 Jun;16(1):1–13.

Begley DJ. Delivery of therapeutic agents to the central nervous system: The problems and the possibilities. Pharmacol Ther. 2004 Oct;104(1):29–45.

Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. Prog Drug Res. 2003;61:39–78.

Bartels AL, Willemsen ATM, Kortekaas R, De Jong BM, De Vries R, De Klerk O, et al. Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm. 2008 Jul;115(7):1001–9.

Rizk ML, Zou L, Savic RM, Dooley KE. Importance of Drug Pharmacokinetics at the Site of Action. Clin Transl Sci [Internet]. 2017 May 1 [cited 2022 Mar 17];10(3):133.

Kiviniemi V, Korhonen V, Kortelainen J, Rytky S, Keinänen T, Tuovinen T, et al. Real-time monitoring of human blood-brain barrier disruption. PLoS One [Internet]. 2017 Mar 1 [cited 2022 Mar 17];12(3):e0174072.

Zheng W. Neurotoxicology of the Brain Barrier System: New Implications. J Toxicol Clin Toxicol [Internet]. 2001 [cited 2022 Mar 17];39(7):711.

Zheng W, Aschner M, Ghersi-Egea JF. Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol [Internet]. 2003 Oct 1 [cited 2022 Mar 17];192(1):1–11.

Mohanasundaram S, Victor Arokia Doss, Prasad Maddisetty, Magesh R, Sivakumar K and Subathra M. Pharmacological analysis of hydroethanolic extract of Senna alata (L.) for in vitro free radical scavenging and cytotoxic activities against HepG2 cancer cell line. Pak. J. Pharm. Sci., 2019; 32(3):931-934.

Rochfort KD, Collins LE, McLoughlin A, Cummins PM. Tumour necrosis factor-α-mediated disruption of cerebrovascular endothelial barrier integrity in vitro involves the production of proinflammatory interleukin-6. J Neurochem [Internet]. 2016 Feb 1 [cited 2022 Mar 17];136(3):564–72.

Bonney S, Seitz S, Ryan CA, Jones KL, Clarke P, Tyler KL, et al. Gamma Interferon Alters Junctional Integrity via Rho Kinase, Resulting in Blood-Brain Barrier Leakage in Experimental Viral Encephalitis. MBio [Internet]. 2019 [cited 2022 Mar 17];10(4).

Kovacsa ZI, Kima S, Jikariaa N, Qureshia F, Miloa B, Lewisa BK, et al. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):E75–84.

Calias P, Banks WA, Begley D, Scarpa M, Dickson P. Intrathecal delivery of protein therapeutics to the brain: a critical reassessment. Pharmacol Ther [Internet]. 2014 [cited 2022 Mar 17];144(2):114–22.

Cohen-Pfeffer JL, Gururangan S, Lester T, Lim DA, Shaywitz AJ, Westphal M, et al. Intracerebroventricular Delivery as a Safe, Long-Term Route of Drug Administration. Pediatr Neurol. 2017 Feb 1;67:23–35.

DeVos SL, Miller TM. Direct Intraventricular Delivery of Drugs to the Rodent Central Nervous System. J Vis Exp [Internet]. 2013 [cited 2022 Mar 17];(75):50326.

Hanson LR, Frey WH, II. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci [Internet]. 2008 Dec [cited 2022 Mar 17];9(Suppl 3):S5.

Brenza TM, Schlichtmann BW, Bhargavan B, Vela Ramirez JE, Nelson RD, Panthani MG, et al. Biodegradable polyanhydride-based nanomedicines for blood to brain drug delivery. J Biomed Mater Res A [Internet]. 2018 Nov 1 [cited 2022 Mar 17];106(11):2881.

Li J, Sabliov C. PLA/PLGA nanoparticles for delivery of drugs across the blood-brain barrier. Nanotechnol Rev [Internet]. 2013 Jun 1 [cited 2022 Mar 17];2(3):241–57.

Yen SY, Chen SR, Hsieh J, Li YS, Chuang SE, Chuang HM, et al. Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion. Oncogene 2016 3517 [Internet]. 2015 Aug 10 [cited 2022 Mar 17];35(17):2156–65.

Hersh DS, Wadajkar AS, Roberts N, Perez JG, Connolly NP, Frenkel V, et al. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr Pharm Des [Internet]. 2016 [cited 2022 Mar 17];22(9):1177.

Pardridge WM. CSF, blood-brain barrier, and brain drug delivery. http://dx.doi.org/101517/1742524720161171315 [Internet]. 2016 Jul 2 [cited 2022 Mar 7];13(7):963–75.

Tosi G, Duskey JT, Kreuter J. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. https://doi.org/101080/1742524720201698544 [Internet]. 2019 [cited 2022 Mar 7];

Mohanasundaram.S, VA Doss, Haripriya G, Varsha M, Daniya S, Madhankumar. GC-MS analysis of bioactive compounds and comparative antibacterial potentials of aqueous, ethanolic and hydroethanolic extracts of Senna alata L against enteric pathogens. Int. J. Res. Pharm. Sci., 2017; 8 (1): 22 – 27.

Chaudhari SP, Shinde PU. Formulation and Characterization of Tranylcypromine loaded Polymeric Micellar In-Situ Nasal Gel for treatment of Depression. J Sci Technol. 2020;5(Volume 5):149–65.

Singh D, Rashid M, Hallan SS, Mehra NK, Prakash A, Mishra N. Pharmacological evaluation of nasal delivery of selegiline hydrochloride-loaded thiolated chitosan nanoparticles for the treatment of depression. Artif cells, nanomedicine, Biotechnol [Internet]. 2016 Apr 2 [cited 2022 Mar 11];44(3):865–77.

Xu J, Tao J, Wang J. Design and Application in Delivery System of Intranasal Antidepressants. Front Bioeng Biotechnol. 2020 Dec 21;8:1450.

Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018 Oct 1;143:155–70.

Panek M, Kawalec P, Pilc A, Lasoń W. Developments in the discovery and design of intranasal antidepressants. https://doi.org/101080/1746044120201776697 [Internet]. 2020 Oct 2 [cited 2022 Mar 18];15(10):1145–64.

Mohanasundaram.S, N.Rangarajan, V.Sampath, K.Porkodi, M.V.Dass Prakash, N.Monicka. GC-MS Identification of Anti-inflammatory and Anticancer Metabolites in Edible Milky White Mushroom (Calocybe indica) against Human Breast Cancer (MCF-7) Cells. Res J Pharm and Tech., 2021; 14(8):4300-4306..

Silva S, Bicker J, Fonseca C, Ferreira NR, Vitorino C, Alves G, et al. Encapsulated Escitalopram and Paroxetine Intranasal Co-Administration: In Vitro/In Vivo Evaluation. Front Pharmacol. 2021 Dec 2;12:3358.

Jani P, Vanza J, Pandya N, Tandel H. Formulation of polymeric nanoparticles of antidepressant drug for intranasal delivery. Ther Deliv [Internet]. 2019 [cited 2022 Mar 11];10(11):683–96.

Vitorino C, Silva S, Gouveia F, Bicker J, Falcão A, Fortuna A. QbD-driven development of intranasal lipid nanoparticles for depression treatment. Eur J Pharm Biopharm [Internet]. 2020;153(April):106–20.

Mutingwende FP, Kondiah PPD, Ubanako P, Marimuthu T, Choonara YE. Advances in nano-enabled platforms for the treatment of depression. Polymers (Basel). 2021;13(9).

Vista de Enfoque de calidad por diseño (QbD) para formular el sistema de gelificación in situ para el suministro desde la nariz al cerebro del hidrocloruro de fluoxetina: estudio in vitro e in vivo [Internet]. [cited 2022 Mar 14].

Pandey YR, Kumar S, Gupta BK, Ali J, Baboota S. Intranasal delivery of paroxetine nanoemulsion via the olfactory region for the management of depression: formulation, behavioural and biochemical estimation. Nanotechnology [Internet]. 2016 Jan 1 [cited 2022 Mar 14];27(2).

Elshafeey AH, El-Dahmy RM. Formulation and Development of Oral Fast-Dissolving Films Loaded with Nanosuspension to Augment Paroxetine Bioavailability: In Vitro Characterization, Ex Vivo Permeation, and Pharmacokinetic Evaluation in Healthy Human Volunteers. Pharmaceutics [Internet]. 2021 Nov 5 [cited 2022 Mar 14];13(11).

Golden RN. Efficacy and tolerability of controlled-release paroxetine. Psychopharmacol Bull [Internet]. 2003 [cited 2022 Mar 14];37 Suppl 1:176–86.

Bhandwalkar MJ, Avachat AM. Thermoreversible nasal in situ gel of venlafaxine hydrochloride: formulation, characterization, and pharmacodynamic evaluation. AAPS PharmSciTech [Internet]. 2013 [cited 2022 Mar 14];14(1):101–10.

Aranaz I, Paños I, Peniche C, Heras Á, Acosta N. Chitosan Spray-Dried Microparticles for Controlled Delivery of Venlafaxine Hydrochloride. Molecules [Internet]. 2017 Nov 1 [cited 2022 Mar 14];22(11).

Mohanasundaram.S, N.Rangarajan, V.Sampath, K.Porkodi, M.Pennarasi. GC-MS and HPLC analysis of Antiglycogenolytic and Glycogenic compounds in Kaempferol 3 – O – gentiobioside containing Senna alata L leaves in experimental rats. Translational Metabolic Syndrome Research., 2021; 4:10-17.

Casolaro M, Casolaro I. Controlled release of antidepressant drugs by multiple stimuli-sensitive hydrogels based on α-aminoacid residues. J Drug Deliv Sci Technol. 2015 Dec 1;30:82–9.

Elhesaisy N, Swidan S. Trazodone Loaded Lipid Core Poly (ε-caprolactone) Nanocapsules: Development, Characterization and in Vivo Antidepressant Effect Evaluation. Sci Reports 2020 101 [Internet]. 2020 Feb 6 [cited 2022 Mar 14];10(1):1–10.

Jani P, Vanza J, Pandya N, Tandel H. Formulation of polymeric nanoparticles of antidepressant drug for intranasal delivery. Ther Deliv [Internet]. 2019 [cited 2022 Mar 14];10(11):683–96.

Fatouh AM, Elshafeey AH, Abdelbary A. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics. Drug Des Devel Ther [Internet]. 2017 Jun 19 [cited 2022 Mar 14];11:1815–25.

Shinde M, Bali N, Rathod S, Karemore M, Salve P. Effect of binary combinations of solvent systems on permeability profiling of pure agomelatine across rat skin: a comparative study with statistically optimized polymeric nanoparticles. Drug Dev Ind Pharm [Internet]. 2020 May 3 [cited 2022 Mar 14];46(5):826–45.

McIntyre RS, Lophaven S, Olsen CK. A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. Int J Neuropsychopharmacol [Internet]. 2014 Oct 1 [cited 2022 Mar 14];17(10):1557–67.

Rangarajan.N, Sangeetha.R, Mohanasundaram.S, Sampath.V, Pokodi.K, Dass Prakash MV (2020). Additive inhibitory effect of the peels of Citrus limon and Citrus sinensis against amylase and glucosidase activity. Int. J. Res. Pharm. Sci., 11(4), 6876-6880.

Bartels C, Wagner M, Wolfsgruber S, Ehrenreich H, Schneider A. Impact of SSRI therapy on risk of conversion from mild cognitive impairment to Alzheimer’s dementia in individuals with previous depression. Am J Psychiatry [Internet]. 2018 Mar 1 [cited 2022 Mar 16];175(3):232–41.

Mathews A, MacLeod C. Cognitive Vulnerability to Emotional Disorders. http://dx.doi.org/101146/annurev.clinpsy1102803143916 [Internet]. 2004 Oct 11 [cited 2022 Mar 16];1:167–95.

Krystal JH, D’Souza DC, Karper LP, Bennett A, Abi-Dargham A, Abi-Saab D, et al. Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacol 1999 1452 [Internet]. 1999 [cited 2022 Mar 14];145(2):193–204.

Sivakumar S, Mohanasundaram S, Rangarajan N, Sampath V, Dass Prakash MV. In silico prediction of interactions and molecular dynamics simulation analysis of Mpro of Severe Acute Respiratory Syndrome caused by novel coronavirus 2 with the FDA-approved nonprotein antiviral drugs. J Appl Pharm Sci, 2022; 12(05):104–119.

Wang, Q., Sivakumar, K. & Mohanasundaram, S. Impacts of extrusion processing on food nutritional components. Int J Syst Assur Eng Manag 13, 364–374 (2022). https://doi.org/10.1007/s13198-021-01422-2.

Bunn HF. Erythropoietin. Cold Spring Harb Perspect Med [Internet]. 2013 Mar 1 [cited 2022 Mar 14];3(3):a011619.

De AK, Bera T. Analytical method development, validation and stability studies by RP-HPLC method for simultaneous estimation of Andrographolide and Curcumin in co-encapsulated nanostructured lipid carrier drug delivery system. Int J Appl Pharm [Internet]. 2021 Sep 7 [cited 2022 Mar 18];13(5):73–86.

Muller AP, Ferreira GK, Pires AJ, de Bem Silveira G, de Souza DL, Brandolfi J de A, et al. Gold nanoparticles prevent cognitive deficits, oxidative stress and inflammation in a rat model of sporadic dementia of Alzheimer’s type. Mater Sci Eng C Mater Biol Appl [Internet]. 2017 Aug 1 [cited 2022 Mar 14];77:476–83.

Valenza M, Chen JY, Di Paolo E, Ruozi B, Belletti D, Ferrari Bardile C, et al. Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington’s disease mice. EMBO Mol Med [Internet]. 2015 Dec [cited 2022 Mar 14];7(12):1547–64.

Abd-Allah H, Nasr M, Ahmed-Farid OAH, El-Marasy SA, Bakeer RM, Ahmed RF. Biological and Pharmacological Characterization of Ascorbic Acid and Nicotinamide Chitosan Nanoparticles against Insulin-Resistance-Induced Cognitive Defects: A Comparative Study. ACS Omega [Internet]. 2021 Feb 9 [cited 2022 Mar 14];6(5):3587–601.

Javed Ahmed Ujjan, William Morani, Naz Memon, Sugumar Mohanasundaram, Shibili Nuhmani, Bhupesh Kumar Singh, "Force Platform-Based Intervention Program for Individuals Suffering with Neurodegenerative Diseases like Parkinson", Computational and Mathematical Methods in Medicine, vol. 2022, Article ID 1636263, 11 pages, 2022. https://doi.org/10.1155/2022/1636263.

Mcintyre RS, Soczynska JK, Woldeyohannes HO, Miranda A, Vaccarino A, Macqueen G, et al. A randomized, double-blind, controlled trial evaluating the effect of intranasal insulin on neurocognitive function in euthymic patients with bipolar disorder. Bipolar Disord [Internet]. 2012 Nov 1 [cited 2022 Mar 16];14(7):697–706.

Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, et al. Intranasal insulin improves cognition and modulates β-amyloid in early AD. Neurology [Internet]. 2008 Feb 5 [cited 2022 Mar 16];70(6):440–8.

Moore K, Hughes CF, Hoey L, Ward M, Cunningham C, Molloy AM, et al. B-vitamins in Relation to Depression in Older Adults Over 60 Years of Age: The Trinity Ulster Department of Agriculture (TUDA) Cohort Study. J Am Med Dir Assoc [Internet]. 2019 May 1 [cited 2022 Mar 16];20(5):551-557.e1.

Roy NM, Al-Harthi L, Sampat N, Al-Mujaini R, Mahadevan S, Al Adawi S, et al. Impact of vitamin D on neurocognitive function in dementia, depression, schizophrenia and ADHD. Front Biosci - Landmark. 2021 Jan 1;26(3):566–611.

Lee HK, Kim SY, Sok SR. Effects of Multivitamin Supplements on Cognitive Function, Serum Homocysteine Level, and Depression of Korean Older Adults With Mild Cognitive Impairment in Care Facilities. J Nurs Scholarsh an Off Publ Sigma Theta Tau Int Honor Soc Nurs [Internet]. 2016 May 1 [cited 2022 Mar 16];48(3):223–31.

Sinn N, Milte CM, Street SJ, Buckley JD, Coates AM, Petkov J, et al. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial. Br J Nutr [Internet]. 2012 Jun 14 [cited 2022 Mar 16];107(11):1682–93.

Published

21-06-2022

How to Cite

JAMES, J., RANI, J., & VARADARAJAN, S. (2022). NANO CARRIER DRUG DELIVERY SYSTEMS FOR THE TREATMENT OF COGNITIVE DYSFUNCTION IN DEPRESSION- AN OVERVIEW ON THE NANO FORMULATIONS TARGETING TO THE BRAIN. International Journal of Applied Pharmaceutics, 14. Retrieved from https://innovareacademics.in/journals/index.php/ijap/article/view/45540

Issue

Section

Original Article(s)