CHARACTERIZATION AND DISSOLUTION RATE STUDIES OF INCLUSION COMPLEX OF GLIBENCLAMIDE AND HYDROXYPROPYL-Β-CYCLODEXTRIN USING CO-GRINDING METHOD

Authors

  • MUTHIA FADHILA Department of Pharmaceutics, School of Pharmaceutical Science Padang (STIFARM Padang), West Sumatera, Indonesia, 25147 https://orcid.org/0000-0002-4858-2594
  • AUZAL HALIM Department of Pharmaceutics, School of Pharmaceutical Science Padang (STIFARM Padang), West Sumatera, Indonesia, 25147
  • ASSYIFA Department of Pharmaceutics, School of Pharmaceutical Science Padang (STIFARM Padang), West Sumatera, Indonesia, 25147

DOI:

https://doi.org/10.22159/ijap.2022v14i6.46041

Keywords:

Glibenclamide, Hydroxypropyl-β-cyclodextrin, Inclusion complex, Co-grinding, Enhancement of solubility, Dissolution rate

Abstract

Objective: Glibenclamide belongs to the 2nd generation sulfonylurea group as an oral antidiabetic with low solubility in water and high bioavailability in systemic circulation (Biopharmaceutical Classification System class II). This study aimed to increase the solubility and dissolution rate of glibenclamide by preparing an inclusion complex of Glibenclamide and Hydroxypropyl-β-cyclodextrin.

Methods: Inclusion complexes were prepared by the co-grinding method in two ratios 1:1 and 1:2 mol. Characterizations of inclusion complex were carried out by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FT-IR) spectroscopy, Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD) analysis. Solubility test was carried out in CO2-free distilled water and dissolution rate was carried out in phosphate buffer pH 7.4.

Results: The results of the SEM analysis showed changes in particle morphology. FT-IR spectroscopy shows a shift in wavenumber. DSC analysis showed a decrease in the melting point of the inclusion complex. XRD characterization results showed a decrease in the intensity of the inclusion complex. Solubility of inclusion complex of glibenclamide increased nine times 1:1 mol inclusion complex, twelve times 1:2 mol inclusion complex compared to intact glibenclamide. The dissolution of glibenclamide, inclusion complex 1:1, and inclusion complex 1:2 in phosphate buffer pH 7.4 medium at 60 min was 17.19%, 34.15% and 52.83% respectively.

Conclusion: Based on the results of the study, it can be said that the glibenclamide inclusion complex with Hydroxypropyl-β-cyclodextrin successfully increases the solubility and dissolution rate of glibenclamide significantly.

Downloads

Download data is not yet available.

References

Furman BL. Glibenclamide. Reference module in biomedical sciences; 2017. p. 1-5.

Nawale RB, Mehta BN. Glibenclamide loaded self-micro emulsifying drug delivery system (SMEDDS): development and optimization. Int J Pharm Pharm Sci. 2013;5(2):325-30.

Carneiro S, Costa Duarte F, Heimfarth L, Siqueira Quintans J, Quintans Junior L, Veiga Junior V. Cyclodextrin–drug inclusion complexes: in vivo and in vitro approaches. Int J Mol Sci. 2019;20(3):642. doi: 10.3390/ijms20030642.

Lizy RS, Prema KJ. Inclusion studies on Α-cyclodextrin complexes of glipizide and gliclazide with the effect of pH. Asian J Pharm Clin Res. 2017;10(1):273-80.

Mendhe AA, Kharwade RS, Mahajan UN. Dissolution enhancement of poorly water-soluble drug by cyclodextrins inclusion complexation. Int J Appl Pharm. 2016;8(4):60-5.

Samamed AC, Rakmai J, Mejuto JC, Gandara JS, Astray G. Cyclodextrins inclusion complex: preparation methods, analytical techniques and food industry applications. Food Chem. 2022;384.

Bekers O, Uijtendaal EV, Beijnen JH, Bult A, Underberg WJM. Cyclodextrins in the pharmaceutical field. Drug Dev Ind Pharm. 1991;17(11):1503-49. doi: 10.3109/ 03639049109026630.

Barzegar Jalali M, Valizadeh H, Adibkia K. Enhancing dissolution rate of carbamazepine via cogrinding with crospovidone and hydroxypropyl methylcellulose. Iran J Pharm Res. 2007;6(3):159-65.

Al-Marzouqi AH, Jobe B, Dowaidar A, Maestrelli F, Mura P. Evaluation of supercritical fluid technology as a preparative technique of benzocaine–cylodextrin complexes–comparison with conventional methods. J Pharm Biomed Anal. 2007;4:566-74.

Syukri Y, Ulfa F, Lestari A, Saputri LA, Istikharah R, Kusuma AP. Characterization, formulation and evaluation of glibenclamide with β-cyclodextrin inclusion complexes tablets. JKKI. 2018;9(3):139-48. doi: 10.20885/JKKI.Vol9.Iss3.art3.

Esclusa Diaz MT, Torres Labandeira JJ, Kata M, Vila Jato JL. Inclusion complexation of glibenclamide with 2-hydroxypropyl-β-cyclodextrin in solution and in solid state. Eur J Pharm Sci. 1994;1(6):291-6. doi: 10.1016/0928-0987(94)90037-X.

Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. Pharmaceutical Press and America Pharmacies Association; 2009.

Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85(10):1017-25. doi: 10.1021/js950534b, PMID 8897265.

British Pharmacopoeia. Commision. British Pharmacopoeia. Vol I and II. London: Medicines and Health care Products Regulatory Agency (MHRA); 2009.

Obaidat AA, Ababneh NM. Improvement of glibenclamide bioavailability using cyclodextrin inclusion complex dispersed in polyethylene glycol. Jordan J Pharm Sci. 2009;2(2):119-30.

Srikanth MV, Muralimohan BGV, Sreenivasa RN, Sunil SA, Balaji S, Ramanamurthy KV. Dissolution rate enhancement of poorly soluble bicalutamide using beta-cyclodextrin inclusion complexation. Int J Pharm Pharm Sci. 2010;2(1):191-8.

Kinoshita M, Baba K, Nagayasu A, Yamabe K, Shimooka T, Takeichi Y. Improvement of solubility and oral bioavailability of a poorly water-soluble drug, TAS-301, by its melt-adsorption on a porous calcium silicate. J Pharm Sci. 2002;91(2):362-70. doi: 10.1002/jps.10026, PMID 11835196.

Pathak SM, Musmade P, Dengle S, Karthik A, Bhat K, Udupa N. Enhanced oral absorption of saquinavir with methyl-Beta-cyclodextrin-preparation and in vitro and in vivo evaluation. Eur J Pharm Sci. 2010;41(3-4):440-51. doi: 10.1016/j.ejps.2010.07.013, PMID 20656025.

Ding Y, Pang Y, Vara Prasad CVNS, Wang B. Formation of inclusion complex of enrofloxacin with 2-hydroxypropyl-β-cyclodextrin. Drug Deliv. 2020;27(1):334-43. doi: 10.1080/10717544.2020.1724210, PMID 32090640.

Nandiyanto ABD, Oktiani R, Ragadhita R. How to read and interpret FTIR spectroscope of organic material. Indonesian J Sci Technol. 2019;4(1):97-118. doi: 10.17509/ijost.v4i1.15806.

Umar S, Farnandi R, Salsabila H, Zaini E. Multicomponent crystal of trimethoprim and citric acid: solid state characterization and dissolution rate studies. Open Access Maced J Med Sci. 2022;10(A):141-5. doi: 10.3889/oamjms.2022.7920.

Kodre KV, Attarde SR, Yendhe PR, Patil RY, Barge VU. Differential scanning calorimetry: a review. Res Rev J Pharm Anal. 2014;3(3):11-22.

Rogel C, Mendoza N, Troncoso J, Gonzalez J, Von Plessing CV. Formulation and characterization of inclusion complexes using hydroxypropyl-β-cyclodextrin and florfenicol with chitosan microparticles. J Chil Chem Soc. 2010;56(1):574-8. doi: 10.4067/S0717-97072011000100011.

Colombo I, Grassi G, Grassi M. Drug mechanochemical activation. J Pharm Sci. 2009;98(11):3961-86. doi: 10.1002/jps.21733, PMID 19338060.

Li W, Ran L, Liu F, Hou R, Zhao W, Li Y. Preparation and characterization of polyphenol-HP-β-cyclodextrin inclusion complex that protects lamb tripe protein against oxidation. Molecules. 2019;24(24):1-15. doi: 10.3390/molecules 24244487, PMID 31817887.

Pamudji JS, Mauludin R, Lestari VA. Improvement of carvedilol dissolution rate trough formation of inclusion complex with β-cyclodextrin. Int J Pharm Pharm Sci. 2014;6(4):2-7.

Published

07-11-2022

How to Cite

FADHILA, M., HALIM, A., & ASSYIFA. (2022). CHARACTERIZATION AND DISSOLUTION RATE STUDIES OF INCLUSION COMPLEX OF GLIBENCLAMIDE AND HYDROXYPROPYL-Β-CYCLODEXTRIN USING CO-GRINDING METHOD. International Journal of Applied Pharmaceutics, 14(6), 251–255. https://doi.org/10.22159/ijap.2022v14i6.46041

Issue

Section

Original Article(s)