ELECTROSPUN NANOFIBERS IN TREATMENT OF MYOCARDIAL INFARCTION: A REVIEW

Authors

  • MD ASHFAQUDDIN Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu 603203 India https://orcid.org/0000-0003-4439-0656
  • VELMURUGAN V. Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu 603203 India
  • M. K. KATHIRAVAN Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu 603203 India https://orcid.org/0000-0001-8357-2730

DOI:

https://doi.org/10.22159/ijap.2023v15i2.46690

Keywords:

Electrospinning, Nanofibers, Myocardial Infarction, Cardiac patch, Cardiomyocytes

Abstract

At the present time, cardiovascular disease (also known as CVD) is one of the primary causes of death. In recent years, regenerative medicine, tissue engineering, and the development of novel materials have been the primary focuses of this field of study. Recently, the public's interest has been piqued by the use of electrospinning technology to produce nanofibrous materials for the treatment of cardiovascular diseases. The production of nanofibers may be accomplished in an easy and versatile way with the use of electrospinning. In this article, we will go through a number of different biodegradable polymers that may be used for the manufacturing of fibers. In addition, we provide the most recent information about the use of nanofibers in the management of myocardial infarction. This analysis comes to a close with a review of the limitations of the technology, its potential future applications for treating cardiovascular illness, and the technical challenges it faces.

The selections of articles for the current review were searched from specialized databases (Range of years: 1997-2021) such as Elsevier, Pubmed, and Cambridge using the keywords:

Electrospinning, Nanofibers, Myocardial Infarction, Cardiac patch, Cardiomyocytes

Other selections include articles from Springer, information from Internet sources, and Online published articles from Wiley, Frontiers, etc.

Downloads

Download data is not yet available.

References

Roger V.L., Go A.S., Lloyd-Jones D.M., Adams R.J., et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123. (2011); 18–209

Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. (2017); 70: 1–25.

Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. heart disease and stroke statistics-2018 update: a report from the American heart association. Circulation. (2018); 137: 67– 492.

Kapelko VI. Extracellular matrix alterations in cardiomyopathy: The possible crucial role in the dilative form. Exp Clin Cardiol. (2001); 6(1): 41–49.

Valiente-Alandi I, Schafer AE, Blaxall BC. Extracellular matrix-mediated cellular communication in the heart. J Mol Cell Cardiol. (2016); 91: 228–237.

Dozois M.D., Bahlmann L.C., Zilberman Y., Tang X.S., Carbon nanomaterial-enhanced frameworks for the creation of cardiac tissue constructs: a new frontier in cardiac tissue engineering. Carbon 120. (2017); 338–349.

Plotkin M., Vaibavi S.R., Rufaihah A.J., Nithya V., Wang J., Shachaf Y., Kofidis T., Seliktar D., The effect of matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack. Biomaterials 35. (2014); 1429–1438.

Dvir T., Kedem A., Ruvinov E., Levy O., Freeman I., Landa N., et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome, Proc. Natl. Acad. Sci. (2009); 106 (35): 14990–14995.

Isenberg B.C., Wong J.Y., Building structure into engineered tissues, Mater. Today. (2006); 9(12): 54–60.

Sahoo S, Tripathy J, Moin A, Meenakshi S, Gowda D. Silver Nanoparticles and Coconut oil incorporated biopolymer based electrospun nanofibers for wound dressing. International Journal of Applied Pharmaceutics. (2021); 7: 204-9.

Li, D.; Xia, Y. Electrospinning of Nanofibers: Reinventing the Wheel? Adv. Mater. (2004), 16: 1151−1170.

Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc. Chem. Res. (2017); 50: 1976−1987.

Sun, B.; Long, Y. Z.; Zhang, H. D.; Li, M. M.; Duvail, J. L.; Jiang, X. Y.; Yin, H. L. Advances in Three-Dimensional Nanofibrous Macrostructures via Electrospinning. Prog. Polym. Sci. (2014); 39: 862− 890.

Liao, Y.; Loh, C. H.; Tian, M.; Wang, R.; Fane, A. G. Progress in Electrospun Polymeric Nanofibrous Membranes for Water Treatment: Fabrication, Modification and Applications. Prog. Polym. Sci. (2018); 77: 69−94.

Reprinted (adapted) with permission from Jiajia Xue, Jingwei Xie, Wenying Liu, and Younan Xia, Electrospun Nanofibers: New Concepts, Materials, and Applications Accounts of Chemical Research 2017 50 (8), 1976-1987, Copyright 2017 American Chemical Society.

Xu, J. F.; Chen, Y. Z.; Wu, D.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Photoresponsive Hydrogen-Bonded Supramolecular Polymers Based on a Stiff Stilbene Unit. Angew. Chem., Int. Ed. (2013); 52: 9738− 9742.

Nuansing, W.; Georgilis, E.; de Oliveira, T. V. A. G.; Charalambidis, G.; Eleta, A.; Coutsolelos, A.G.; Mitraki, A.; Bittner, A.M. Electrospinning of Tetraphenylporphyrin Compounds into Wires. Part. Part. Syst. Charact. (2014); 31: 88−93.

Li, D.; Xia, Y. Fabrication of Titania Nanofibers by Electrospinning. Nano Lett. (2003); 3: 555−560.

Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int. J. Mol. Sci. (2017); 18.

Katritsis DG, Sotiropoulou PA, Karvouni E, Karabinos I, Korovesis S, Perez SA, Voridis EM, Papamichail M Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv. (2005); 65: 321–329.

Tashakori M., Rakhshan K., Ramez M., et al., Conductive carbon nanofibers incorporated into collagen bio-scaffold assists myocardial injury repair, International Journal of Biological Macromolecules. (2020); 6-9.

Laflamme M.A., Zbinden S., Epstein S.E., Murry C.E., Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms, Annu. Rev. Pathol. Mech. (2007); 2: 307–339.

Simons M., Ware J.A., Therapeutic angiogenesis in cardiovascular disease, Nat. Rev. Drug Discovery. (2003); 2: 863–871.

Rufaihah A.J., Yasa I.C., Ramanujam V.S., Arularasu S.C., et al. Angiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarction, Acta Biomaterialia. (2017); 58: 5-10

Ling-Ling E., Zhao Y.S., Guo X.M., Wang C.Y., Jiang H., et al. Enrichment of cardiomyocytes derived from mouse embryonic stem cells, J. Heart Lung Transpl. (2006); 25: 664–674.

Bin Z., Sheng L.G., Gang Z.C., Hong J., Jun C., et al. Efficient cardiomyocyte differentiation of embryonic stem cells by bone morphogenetic protein-2 combined with visceral endoderm-like cells, Cell Biol. Int. (2006); 30: 769–776.

Chiavegato A., Bollini S., Pozzobon M., Callegari A., et al. Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat, J. Mol. Cell. Cardiol. (2007); 42: 746–759.

Streeter B.W., Xue J., Xia Y., and Michael E. Davis, Electrospun Nanofiber-Based Patches for the Delivery of Cardiac Progenitor Cells, ACS Applied Materials & Interfaces. (2019) 11(20): 18242-18253

Reprinted (adapted) with permission from Benjamin W. Streeter, Jiajia Xue, Younan Xia, and Michael E. Davis Electrospun Nanofiber-Based Patches for the Delivery of Cardiac Progenitor Cells ACS Applied Materials & Interfaces 2019 11 (20), 18242-18253, Copyright 2019 American Chemical Society.

Li J., Minami I., Shiozaki M., Yu L., Yajima S., et al. Human Pluripotent Stem Cell-Derived Cardiac Tissue-like Constructs for Repairing the Infarcted Myocardium, Stem Cell Reports. (2017); 9(5): 1546-1559

Nakao K., Minobe W., Roden R., Bristow M.R., Leinwand, L.A. Myosin heavy chain gene expression in human heart failure. J. Clin. Invest. (1997); 100: 2362.

Hitscherich P, Aphale A, Gordan R, Whitaker R, Singh P, Xie L, Patra P, Lee EJ. 2018. Electroactive graphene composite scaffolds for cardiac tissue engineering. J Biomed Mater Res Part A. (2018); 106A: 2923–2933.

Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, et al. Carbon-nanotube- embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano (2013); 7(3): 2369–2380.

Chan V, Raman R, Cvetkovic C, Bashir R. Enabling microscale and nanoscale approaches for bioengineered cardiac tissue. ACS Nano. (2013); 7(3): 1830–1837.

Aguilar J.O., Aviles F., Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. eXPRESS Polym Lett. (2010); 4(5): 292–299.

Roy S, Mitra K, Desai C, Petrova R, Mitra S. Detonation nanodiamonds and carbon nanotubes as reinforcements in epoxy composites – A comparative study. J Nanotechnol Eng Med. (2013) ;4(1): 011008–011008.

Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, et al. A new platform for maturation of human pluripotent stem cell derived cardiomyocytes. Nat Methods. (2013);10(8)P: 781–787.

Hernandez D, Millard R, Sivakumaran P, Wong RC, Crombie DE, et al. Electrical stimulation promotes cardiac differentiation of human induced pluripotent stem cells. Stem Cells Int. (2016).

Kim T, Kahng YH, Lee T, Lee K, Kim H. Graphene films show stable cell attachment and biocompatibility with electrogenic primary cardiac cells. Mol Cells. (2013); 36(6): 577–582.

Spearman BS, Hodge AJ, Porter JL, Hardy JG, Davis ZD, Xu T, Zhang X, Schmidt CE, Hamilton MC, Lipke EA. Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological development of cardiac cells. Acta Biomater. (2015); 28: 109–120.

Ishii O, Shin M, Sueda T, Vacanti JP. In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix-like topography. J Thor Cardiovasc Surg. (2005);130(5): 1358–1363.

You JO, Rafat M, Ye GJ, Auguste DT. Nanoengineering the heart: Conductive scaffolds enhance connexin 43 expression. Nano Lett. (2011); 11(9): 3643–3648.

Wang J, Cui C, Nan H, Yu Y, Xiao Y, Poon E, Yang G, Wang X, Wang C, Li L, Boheler KR, Ma X, Cheng X, Ni Z, Chen M. Graphene sheet-induced global maturation of cardiomyocytes derived from human induced pluripotent stem cells. ACS Appl Mater Inter. (2017); 9(31): 25929–25940.

Zhang Y, Kanter EM, Laing JG, Aprhys C, Johns DC, Kardami E, Yamada KA. Connexin43 expression levels influence intercellular coupling and cell proliferation of native murine cardiac fibroblasts. Cell Commun Adhes. (2008); 15(3): 289–303.

Hitscherich P, Aphale A, Gordan R, Whitaker R, Singh P, Xie LH, Patra P, Lee EJ. Electroactive graphene composite scaffolds for cardiac tissue engineering. Journal of Biomedical Materials Research Part A. (2018);106(11): Figure 4, page 2928

Mehrabi A., Baheiraei, N., Adabi, M. et al. Development of a Novel Electroactive Cardiac Patch Based on Carbon Nanofibers and Gelatin Encouraging Vascularization. Appl Biochem Biotechnol. (2020); 190: 931–948

Liang Y., Mitriashkin A., Lim T. M., Goh J. C., Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering, Biomaterials. (2021); 276: 121008

Lammel A.S., Hu X., Park S.H., Kaplan D.L., Scheibel T.R., Controlling silk fibroin particle features for drug delivery, Biomaterials. (2010); 31: 4583–4591,

Helgeson M.E., Grammatikos K.N., Deitzel J.M., Wagner N.J., Theory and kinematic measurements of the mechanics of stable electrospun polymer jets, Polymer (Guildf). (2008); 49: 2924–2936

Zhao G., Qing H., Huang G., Genin G.M., Lu T.J., Luo Z., Xu F., Reduced Graphene Oxide Functionalized Nano Fibrous Silk Fibroin Matrices for Engineering Excitable Tissues, NPG Asia Mater. (2018)

Fleischer S., Shevach M., Feiner R., Dvir T., Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues, Nanoscale. (2014); 6: 9410–9414,

Dan K., Molamma P., Guorui P., Lingling J., Ramakrishna T.S., Potential of VEGF-encapsulated electrospun nanofibers for in vitro cardiomyogenic differentiation of human mesenchymal stem cells, Journal of tissue engineering and regenerative medicine. (2017); 11(4): 1002-1010

Di Domenico M., D'apuzzo F., Feola A., Cito L., Monsurrò A., et al. "Cytokines and VEGF Induction in Orthodontic Movement in Animal Models", BioMed Research. (2012): 4

Chiu L.L.Y., Radisic M., Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues, Biomaterials. (2010); 31(2): 226-241

Guo H., Cui G., Yang J., Wang C., Zhu J., et al. Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction, Biochemical and Biophysical Research Communications. (2012); 424(1): 105-111

Kai D, Prabhakaran MP, Jin G, Tian L, Ramakrishna S. Potential of VEGF‐encapsulated electrospun nanofibers for in vitro cardiomyogenic differentiation of human mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine. (2017);11(4): Figure 4

Wang L., Wu Y., Hu T., Guo B., Ma P.X., Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators, Acta Biomaterialia, (2017); 59: 68-81

Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, Freed LE, Vunjak-Novakovic G. Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol. Bioeng. (1999); 64: 580-589.

Zhao G, Zhang X, Lu TJ, Xu F. Recent advances in electrospun nanofibrous scaffolds for cardiac tissue engineering. Adv. Funct. Mater. (2015); 25: 5726-5738.

Fleischer S, Feiner R, Shapira A, Ji J, Sui X, Daniel Wagner H, Dvir T. Spring-like fibers for cardiac tissue engineering. Biomaterials. (2013); 34: 8599-8606.

Hsiao CW, Bai MY, Chang Y, Chung MF, Lee TY, Wu CT, Maiti B, Liao ZX, Li RK, Sung HW. Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials. (2013); 34: 1063-1072.

Chen J., Zhan Y., Wang Y., Han D., Tao B., et al. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats, Acta Biomaterialia. (2018); 80: 154-168

Wu Y., Wang L., Guo B., Ma P.X., Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy, ACS Nano. (2017).

Vepari C., Kaplan D.L., Silk as a biomaterial, Prog. Polym. Sci. (2007); 32(8-9): 991–1007.

Roughley P., Hoemann C., DesRosiers E., Mwale F., Antoniou J., Alini M., The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation, Biomaterials. (2006); 27(3): 388–396.

Pok S., Vitale F., Eichmann S.L., Benavides O.M., Pasquali M., Jacot J.G., Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart, ACS Nano. (2014); 8(10): 9822–9832.

Zhu Y., Liu T., Song K., Fan X., Ma X., Cui Z., Ex vivo expansion of adipose tissue derived stem cells in spinner flasks, Biotechnol. J. (2009); 4(8): 1198–1209.

Naftali-Shani N., Levin-Kotler L.P., Palevski D., Amit U., Kain D., Landa N., et al. Left ventricular dysfunction switches mesenchymal stromal cells toward an inflammatory phenotype and impairs their reparative properties via toll-like receptor-4, Circulation. (2017).

Nakao K., Minobe W., Roden R., Bristow M.R., Leinwand L.A., Myosin heavy chain gene expression in human heart failure, J. Clin. Invest. (1997); 100(9): 2362–2370.

Cheng V., Kazanagra R., Garcia A., Lenert L., Krishnaswamy P., Gardetto N., et al. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study, J. Am. Coll. Cardiol. (2001); 37(2): 386–391.

Shokraei N, Asadpour S, Shokraei S, Nasrollahzadeh S.M, Faridi-Majidi R, Ghanbari H. Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering. Microsc Res Tech. (2019); 82: 1316– 1325.

Wadhwa A, Mathura V, Lewis S. Emerging novel nanopharmaceuticals for drug delivery. Asian J. Pharm. Clin. Res. (2018) Jul 1(11): 35-42.

Zhou J., Chen J., Sun H., Qiu X., Mou Y., Liu Z., Duan C. Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function. Scientific Reports. (2014); 4: 3733.

Meng J., Han Z., Kong H., Qi X., Wang C., Xie S., & Xu H. Electrospun aligned nanofibrous composite of MWCNT/polyurethane to enhance vascular endothelium cells proliferation and function. Journal of Biomedical Materials Research Part A. (2010); 95(1): 312–320.

Shokraei N, Asadpour S, Shokraei S, Nasrollahzadeh Sabet M, Faridi‐Majidi R, Ghanbari H. Development of electrically conductive hybrid nanofibers based on CNT‐polyurethane nanocomposite for cardiac tissue engineering. Microscopy Research and Technique. (2019);82(8): Figure 8, page 1323.

Jain A., Behera M., Mahapatra C., Sundaresan N.R., Chatterjee K., Nanostructured polymer scaffold decorated with cerium oxide nanoparticles toward engineering an antioxidant and anti-hypertrophic cardiac patch, Materials Science and Engineering: C. (2021); 118: 111416

Xu C., Qu X., Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Materials 6. (2014); 90.

Ghosh L.D., Ravi V., Sanpui P., Sundaresan N.R., Chatterjee K., Keratin mediated attachment of stem cells to augment cardiomyogenic lineage commitment. Colloids Surf B Biointerfaces. (2017); 151: 178–188.

Tsutsui H., Kinugawa S., Matsushima S., Oxidative Stress and Heart failure. Am. J. Physiol. Heart Circ. Physiol. (2011); 301: 2181–2190.

Ohta Y., Kinugawa S., Matsushima S., Ono T., Sobirin M.A., Tsutsui H., et al. Oxidative Stress and Heart failure Am. J. Physiol. Heart Circ. Physiol. (2011); 300 :1637–1644

Razeghi P., Young M.E., Alcorn J.L., Moravec C.S., Frazier O.H., Taegtmeyer H., Intrinsic diurnal variations in cardiac metabolism and contractile function. Circulation. (2001); 104: 2923–2931.

Jain A., Ravi V., Muhamed J., Chatterjee K., Sundaresan N.R., A simplified protocol for culture of murine neonatal cardiomyocytes on nanoscale keratin coated surfaces. Int. J. Cardiol. (2017); 232; 160–170.

Sarikhani M., Maity S., Mishra S., Jain A., Tamta A.K., et al. SIRT2 deacetylase represses NFAT transcription factor to maintain cardiac homeostasis. J. Biol. Chem. (2018); 293: 5281–5294.

Sundaresan N.R., Vasudevan P., Zhong L., Kim G., Samant S., et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat. Med. (2012); 18: 1643–1650.

Nazari H, Heirani-Tabasi A, Hajiabbas,M, et al. Incorporation of SPION-casein core-shells into silk-fibroin nanofibers for cardiac tissue engineering. J Cell Biochem. (2020); 121: 2981– 2993.

Nazari H, Heirani‐Tabasi A, Hajiabbas M, Salimi Bani M, Nazari M, Pirhajati Mahabadi V, Rad I, Kehtari M, Ahmadi Tafti SH, Soleimani M. Incorporation of SPION‐casein core‐shells into silk‐fibroin nanofibers for cardiac tissue engineering. Journal of Cellular Biochemistry. (2020);121(4):Figure 3, page 8.

Sridharan D., Palaniappan A., Blackstone B.N., Dougherty J.A., et al. In situ differentiation of human-induced pluripotent stem cells into functional cardiomyocytes on a coaxial PCL-gelatin nanofibrous scaffold, Materials Science and Engineering: C. (2021);118: 111354

Blackstone B.N., Hahn J.M., McFarland K.L., DeBruler D.M., et al. Inflammatory response and biomechanical properties of coaxial scaffolds for engineered skin in vitro and post-grafting, Acta Biomater. (2018); 80: 247–257.

Blackstone B.N., Drexler J.W., Powell H.M., Tunable engineered skin mechanics via coaxial electrospun fiber core diameter, Tissue Eng. Part A. (2014); 20(19-20): 2746–2755.

Centeno E.G.Z., Cimarosti H., Bithell A., 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling, Mol. Neurodegener. (2018); 13(1): 27.

Duval K., Grover H., Han L.-H., Mou Y., Pegoraro A.F., Fredberg J., Chen Z., Modeling physiological events in 2D vs. 3D cell culture, Physiology (Bethesda). (2017); 32(4): 266–277.

Pontes Soares C., Midlej V., de Oliveira M.E.W., Benchimol M., Costa M.L., Mermelstein C., 2D and 3D-organized cardiac cells shows differences in cellular morphology, adhesion junctions, presence of myofibrils and protein expression, PLoS One. (2012); 7(5): 38147.

Branco M.A., Cotovio J.P., Rodrigues C.A.V., Vaz S.H., Fernandes T.G., et al. Transcriptomic analysis of 3D cardiac differentiation of human induced pluripotent stem cells reveals faster cardiomyocyte maturation compared to 2D culture, Sci. Rep. (2019); 9(1): 9229.

Zuppinger C., 3D cardiac cell culture: a critical review of current technologies and applications, Front. Cardiovasc. Med. (2019); 6(87)

Meier F., Freyer N., Brzeszczynska J., Knospel F., Armstrong L., Lako M., Greuel S., et al. Hepatic differentiation of human iPSCs in different 3D models: a comparative study, Int. J. Mol. Med. (2017); 40(6): 1759–1771.

Ahmadi P., Nazeri N., Derakhshan M.A., Ghanbari H., Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering, International Journal of Biological Macromolecules. (2021); 180: 590-598

Fernández-d’Arlas B., Khan U., Rueda L., Coleman J.N., Mondragon I., Corcuera M.A., Eceiza A., Influence of hard segment content and nature on polyurethane/ multiwalled carbon nanotube composites, Compos. Sci. Technol. (2011); 71(8): 1030–1038.

Tondnevis F., Keshvari H., Mohandesi J.A., Fabrication, characterization, and in vitro evaluation of electrospun polyurethane-gelatin-carbon nanotube scaffolds for cardiovascular tissue engineering applications, J. Biomed. Mater. Res. B Appl. Biomater. (2020); 108(5): 2276–2293.

Wang S., Li Y., Zhao R., Jin T., Zhang L., Li X., Chitosan surface modified electrospun poly (ε-caprolactone)/carbon nanotube composite fibers with enhanced mechanical, cell proliferation and antibacterial properties, Int. J. Biol. Macromol. (2017); 104: 708–715.

Nazeri N., Derakhshan M.A., Faridi-Majidi R., Ghanbari H., Novel electro-conductive nanocomposites based on electrospun PLGA/CNT for biomedical applications, J. Mater. Sci. Mater. Med. (2018): 29(11): 168.

Hasanzadeh E., Ebrahimi-Barough S., Mirzaei E., Azami M., Tavangar S.M., Mahmoodi N., Basiri A. Preparation of fibrin gel scaffolds containing MWCNT/ PU nanofibers for neural tissue engineering, J. Biomed. Mater. Res. A. (2019); 107(4): 802–814.

Kharaziha M., Shin S.R., Nikkhah M., Topkaya S.N., Masoumi N., Annabi N., Dokmeci M.R., Khademhosseini A., Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs, Biomaterials. (2014); 35(26): 7346–7354.

Mi H.Y., Salick M.R., Jing X., Crone W.C., Peng X.F., Turng L.S., Electrospinning of unidirectionally and orthogonally aligned thermoplastic polyurethane nanofibers: fiber orientation and cell migration, J. Biomed. Mater. Res. A. (2015); 103(2): 593–603.

Demir M.M., Yilgor I., Yilgor E., Erman B., Electrospinning of polyurethane fibers, Polymer. (2002); 43(11): 3303–3309.

Mombini S, Mohammad N.J, Bakhshandeh B, Narmani A, Nourmohammadi J, Vahdat S, et al. Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering. Int J Biol Macromol. (2019); 140: 278–87.

Du H, Tao L, Wang W, Liu D, Zhang Q, Sun P, et al. Enhanced biocompatibility of poly(lactidecoepsiloncaprolactone) electrospun vascular grafts via self-assembly modification. Mater Sci Eng C Mater Biol Appl. (2019); 100: 845–54.

Published

24-01-2023

How to Cite

ASHFAQUDDIN, M., V., V., & KATHIRAVAN, M. K. (2023). ELECTROSPUN NANOFIBERS IN TREATMENT OF MYOCARDIAL INFARCTION: A REVIEW. International Journal of Applied Pharmaceutics, 15(2). https://doi.org/10.22159/ijap.2023v15i2.46690

Issue

Section

Review Article(s)