ABIRATERONE ACETATE LOADED SOLID LIPID NANOPARTICLES FOR IMPROVED ORAL BIOAVAILABILITY: DESIGN OF EXPERIMENTS BASED FORMULATION OPTIMIZATION, IN-VITRO, EX-VIVO AND IN-VIVO CHARACTERIZATION
DOI:
https://doi.org/10.22159/ijap.2023v15i2.46710Keywords:
Abiraterone acetate, Solid Lipid Nanoparticles, Sustained Release, BCS Class IV drugs, Design of ExperimentsAbstract
Objective: Abiraterone acetate (AA), a BCS Class IV drug, demonstrates biopharmaceutical challenges like polymorphism, poor solubility (<0.5 μg/ml), inconsistent permeability, and low oral bioavailability (<10%) (Hence requires high dose of 1000mg/day). The current research’s main objective is to improve oral bioavailability by manufacturing AA-loaded solid lipid nanoparticles (AA-SLNs).
Methods: SLNs were manufactured using hot homogenization followed by ultra-sonication method. Initial screening of lipids (Glyceryl monostearate (GMS), Glyceryl Monooleate (GMO)), and surfactants (Tween 80 and Span 20) was done by mixture design. Based on statistical analysis, GMO and Tween 80 were selected for further optimization, and Central composite design (CCD) of experiments were done to optimize the composition using particle size, polydispersity index (PDI), encapsulation efficiency (EE), zeta potential, and cumulative % drug release as responses. Comparative ex-vivo and in-vivo evaluations of optimized formulation were done with pure drug and marketed formulation.
Results: Based on statistical evaluation, GMO - 4.4% and Tween 80 - 3.6% were optimized. Optimized AA-SLNs were found in spherical shape with size of 286.7±12.6 nm, PDI of 0.138±0.015, EE of 94.0±1.0 %, and zeta potential of -25.0±1.0 mV. Drug release from optimized formulation was extended for 24 hours, and ex-vivo permeability was increased by 2.5 and 1.42 times, whereas Relative Oral bioavailability was improved by 6.36 and 1.99 times compared to pure drug and marketed tablets, respectively.
Conclusion: The results concluded that AA-SLNs showed increased oral bioavailability compared to the pure drug and marketed formulation. Hence the dose of the formulation can be reduced to achieve desired therapeutic effect.
Downloads
References
U.S. Food & Drug Administration [Internet], U.S. Department of Health and Human Services. Clinical pharmacology and biopharmaceutics review(s); Center for drug evaluation and research; Application number: 202155Orig1s000; [updated 2011 May 27; cited 2022 Jun 26]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202379Orig1s000ClinPharmR.pdf
U.S. Food & Drug Administration [Internet], U.S. Department of Health and Human Services. Guidance for Industry; M9 Biopharmaceutics classification system based biowaivers, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER); [Updated 2021 May 2021; cited 2022 Jun 26] ICH.Available from: https://www.fda.gov/media/148472/download
U.S. Food & Drug Administration [Internet], U.S. Department of Health and Human Services.Labeling-Package Insert. Supplement-35. [Updated 2021 Aug 23; cited 2022 Jun 26]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/202379s035lbl.pdf
Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, Siva Kumar N, Vekariya RL. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv. 2020;10:26777–26791. doi.org/10.1039/D0RA03491F; PMID 35515778
Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J PharmaBiopharm. 2000 Jul;50(1):161–177. doi: 10.1016/s0939-6411(00)00087-4; PMID 10840199
Baishya, B., S. S. Rahman, D. Rynjah, K. Barman, S. S. Bordoloi, J. Islam, and N. Hasan. Enhancing of oral bioavailability of poorly water-soluble antihypertensive drugs. Int J Curr Pharm Res, vol. 13, no. 4, July 2021, pp. 42-47., doi:10.22159/ijcpr.2021v13i4.42741.
de Carvalho SM, Noronha CM, Floriani CL, Lino RC, Rocha G, Bellettini IC, Ogliari PJ, Barreto PLM. Optimization of α-tocopherol loaded solid lipid nanoparticles by central composite design. Industrial Crops and Products. 2013;49:278–285. doi:10.1016/j.indcrop.2013.04.054
Mehnert W. Solid lipid nanoparticles Production, characterization and applications. Advanced Drug Delivery Reviews [Internet]. 2001 [cited 2022 Oct 30];47:165–196. doi:10.1016/S0169-409X(01)00105-3. PMID 11311991
Singh B, Kumar R, Ahuja N. Optimizing drug delivery systems using systematic "design of experiments.” part i: fundamental aspects. Crit Rev Ther Drug Carrier Syst. 2005 22:27–105. doi:10.1615/CritRevTherDrugCarrierSyst.v22.i1.20. PMID15715503
Wang Q, Wong C-H, Chan HYE, Lee W-Y, Zuo Z. Statistical Design of Experiment (Doe) based development and optimization of DB213 in situ thermosensitive gel for intranasal delivery. Int JPharm. 2018 Mar 25; 539:50–57. doi:10.1016/j.ijpharm.2018.01.032. PMID 29366939
Baş D, Boyacı İH. Modeling and optimization I: Usability of response surface methodology. J Food Eng. 2007Feb; 78(3):836–845. doi:10.1016/j.jfoodeng.2005.11.024. PMID 29366939
Hao J, Fang X , Zhou Y, Wang J, Guo F, Li F, Peng X. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int J Nanomedicine. 2011;6:683-92. doi:10.2147/IJN.S17386. PMID 21556343
Krstić, Marko & Ražić, Slavica & Djekic, Ljiljana & Dobričić, Vladimir & Momčilović, Milica & Vasiljevic, Dragana & Ibrić, Svetlana. (2015). Application of a mixture experimental design in the optimization of the formulation of solid self-emulsifying drug delivery systems containing carbamazepine. Lat. Am. J.Pharm. 34. 885-94.
Abdelbary G, Fahmy RH. Diazepam-Loaded Solid Lipid Nanoparticles: Design and Characterization. AAPS PharmSciTech. 2009; 10(1):211–219. doi:10.1208/s12249-009-9197-2. PMID 19277870
Beg S, Malik AK, Afzal O, Altamimi ASA, Kazmi I, Al-Abbasi FA, Almalki WH, Barkat MA, Kawish SM, Pradhan DP, et al. Systematic Development and Validation of a RP-HPLC Method for Estimation of Abiraterone Acetate and its Degradation Products. J Chromatogr Sci. 2021Jan 1;59(1):79–87. doi:10.1093/chromsci/bmaa080. PMID 33169159
Gupta S, Kesarla R, Chotai N, Misra A, Omri A. Systematic Approach for the Formulation and Optimization of Solid Lipid Nanoparticles of Efavirenz by High Pressure Homogenization Using Design of Experiments for Brain Targeting and Enhanced Bioavailability. Biomed Res Int. 2017;2017:1–18. doi:10.1155/2017/5984014. PMID 28243600
Hassan H, Adam SK, Alias E, Meor Mohd Affandi MMR, Shamsuddin AF, Basir R. Central Composite Design for Formulation and Optimization of Solid Lipid Nanoparticles to Enhance Oral Bioavailability of Acyclovir. Molecules. 2021Sep 7; 26(18):5432. doi:10.3390/molecules26185432. PMID 34576904
Varshosaz J, Ghaffari S, Khoshayand MR, Atyabi F, Azarmi S, Kobarfard F. Development and optimization of solid lipid nanoparticles of amikacin by central composite design. JLiposome Res. 2010;20:97–104. doi:10.3109/08982100903103904. PMID 19621981
Emara LH, Emam MF, Taha NF, El-ashmawy AA, Mursi NM. In-vitro dissolution study of meloxicam immediate release products using flow through cell (usp apparatus 4) under different operational conditions. Int J Pharm Pharm Sci. 2014 Nov. 1;6(11):254-60. Available from: https://innovareacademics.in/journals/index.php/ijpps/article/view/3094
Fecioru E, Klein M, Krämer J, Wacker MG. In Vitro Performance Testing of Nanoparticulate Drug Products for Parenteral Administration. Dissolution Technol. 2019;26:28–37. doi: 10.14227/DT260319P28.
Qiu S, Wang K, Li M. In Vitro Dissolution Studies of Immediate-Release and Extended-Release Formulations Using Flow-Through Cell Apparatus 4. Dissolution Technol. 2014;21. doi: 10.14227/DT210214P6.
B. Sánchez A, C. Calpena A, Mallandrich M, Clares B. Validation of an Ex Vivo Permeation Method for the Intestinal Permeability of Different BCS Drugs and Its Correlation with Caco-2 In Vitro Experiments. Pharmaceutics. 2019;11:638. doi:10.3390/pharmaceutics11120638. PMID 31795506
Obinu A, Porcu EP, Piras S, Ibba R, Carta A, Molicotti P, Migheli R, Dalpiaz A, Ferraro L, Rassu G, et al. Solid Lipid Nanoparticles as Formulative Strategy to Increase Oral Permeation of a Molecule Active in Multidrug-Resistant Tuberculosis Management. Pharmaceutics. 2020 Nov 24;12(12):1132. doi:10.3390/pharmaceutics12121132. PMID 33255304
Hintzen F, Laffleur F, Sarti F, Müller C, Bernkop-Schnürch A. In vitro and ex vivo evaluation of an intestinal permeation enhancing self-microemulsifying drug delivery system (SMEDDS). J Drug Deliv Sci Technol. 2013;23:261–267. doi:10.1016/S1773-2247(13)50039-6.
Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016 Mar;7(2):27-31. doi: 10.4103/0976-0105.177703. PMID: 27057123; PMCID: PMC4804402.
Beg S, Malik AK, Ansari MJ, Malik AA, Ali AMA, Theyab A, Algahtani M, Almalki WH, Alharbi KS, Alenezi SK, et al. Systematic Development of Solid Lipid Nanoparticles of Abiraterone Acetate with Improved Oral Bioavailability and Anticancer Activity for Prostate Carcinoma Treatment. ACS Omega. 2022 May 10;7(20):16968–16979. doi:10.1021/acsomega.1c07254. PMID 35647451
Tokarek K, Hueso JL, Kuśtrowski P, Stochel G, Kyzioł A. Green Synthesis of Chitosan‐Stabilized Copper Nanoparticles. Eur J Inorg Chem [Internet]. 2013 [cited 2022 Oct 30];2013:4940–4947. doi:10.1002/ejic.201300594.
Ekambaram P, Abdul HS. Formulation and evaluation of solid lipid nanoparticles of ramipril. J Young Pharm. 2011 Jul;3(3):216-20. doi: 10.4103/0975-1483.83765. PMID: 21897661; PMCID: PMC3159275
McClements DJ. Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems. Adv Colloid Interface Sci. 2012 Jun 15;174:1-30. doi: 10.1016/j.cis.2012.03.002. Epub 2012 Mar 14. PMID: 22475330
Maryam Banay Zirak, Akram Pezeshki. Effect of Surfactant Concentration on the Particle Size, Stability and Potential Zeta of Beta carotene Nano Lipid Carrier. Int.J.Curr.Microbiol.App.Sci (2015)4(9): 924-932.
Kushwaha AK, Vuddanda PR, Karunanidhi P, Singh SK, Singh S. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. Biomed Res Int. 2013;2013:584549. doi: 10.1155/2013/584549. Epub 2013 Oct 20. PMID: 24228255; PMCID: PMC3817799.
Anuj G, Devendra ST, Kripal B, Muhammad W.Development and investigation of Artemether loaded binary solid lipid nanoparticles: Physicochemical characterization and in-situ single-pass intestinal permeability. J. Drug Deliv. 2020 Dec: volume 60. Doi:10.1016/j.jddst.2020.102072
Deshkar SS, Bhalerao GS,Jadhav SM and Shirolkar VS, Formulation and Optimization of Topical Solid Lipid Nanoparticles based Gel of Dapsone Using Design of Experiment, Pharm. Nanotechnol 2018; 6(4) . https://dx.doi.org/10.2174/2211738506666181105141522
Sallam MA, Marín Boscá MT. Optimization, ex vivo permeation, and stability study of lipid nanocarrier loaded gelatin capsules for treatment of intermittent claudication. Int J Nanomedicine. 2015 Jul 13;10:4459-78. doi: 10.2147/IJN.S83123. PMID: 26203244; PMCID: PMC4508069.
Bhalekar, M., Upadhaya, P. & Madgulkar, A. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci 7, 47–57 (2017). https://doi.org/10.1007/s13204-017-0547-1
Poonia N, Lather V, Narang JK, Beg S, Pandita D. Resveratrol-loaded folate targeted lipoprotein-mimetic nanoparticles with improved cytotoxicity, antioxidant activity and pharmacokinetic profile. Mater Sci Eng C Mater Biol Appl. 2020 Sep;114:111016. doi: 10.1016/j.msec.2020.111016. Epub 2020 Apr 25. PMID: 32993976.
Schultz HB, Meola TR, Thomas N, Prestidge CA. Oral formulation strategies to improve the bioavailability and mitigate the food effect of abiraterone acetate. Int J Pharm. 2020 Mar 15;577:119069. doi: 10.1016/j.ijpharm.2020.119069. Epub 2020 Jan 22. PMID: 31981706.
Published
How to Cite
Issue
Section
Copyright (c) 2022 SURESH KONATHAM, SHASHIKALA PATANGAY

This work is licensed under a Creative Commons Attribution 4.0 International License.