CONTEMPORARY DRIFTS IN DIABETES MANAGEMENT

Authors

  • SHRUBAWATI SARKAR Department of Zoology, Derozio Memorial College, Rajarhat, West Bengal, India
  • SOUMOK SADHU Department of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland https://orcid.org/0000-0003-4186-254X
  • RUPAK ROY SHRM Biotechnologies Pvt Ltd., Humaipur, Madhyamgram, West Bengal, India
  • SAMBIT TARAFDAR Amity Institute of Virology and Immunology, Amity University, Noida, India https://orcid.org/0000-0002-7519-700X
  • NABANITA MUKHERJEE Agricultural & Ecological Research Unit, Biological Science Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India https://orcid.org/0000-0002-3284-203X
  • MOUMITA SIL Agricultural & Ecological Research Unit, Biological Science Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
  • ARUNAVA GOSWAMI Agricultural & Ecological Research Unit, Biological Science Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
  • NITHAR RANJAN MADHU Department of Zoology, Acharya Prafulla Chandra College, New Barrackpore, Kolkata 700131, West Bengal, India https://orcid.org/0000-0003-4198-5048

DOI:

https://doi.org/10.22159/ijap.2023v15i2.46792

Keywords:

β-cells, insulin, nanotechnology, diabetes mellitus, stem cell therapy.

Abstract

Diabetes mellitus is a cumulative effect of various cellular and biochemical malfunctions which trigger the blood glucose level far beyond the normal range. From 1980 to 2014, more than 314 million individuals had diabetes. Epidemiology states that it is becoming more prevalent in low-income, middle-income, more specifically, third-world countries than the first-world countries. It showed mortality rate increased by 5% in premature ages. It was the 9th leading reason for almost 1.5 million deaths. The diagnosis clearly suggests the replacement of insulin-producing pancreatic endocrine cells. Stem cell treatment substitutes the infected or destroyed cells from pluripotent stem cells or multipotent stem cells. One of the favourite ways to understand and treat diabetes mellitus is embryonic stem cells, including pluripotent cells. The in vitro demonstration of iPSC-derived pancreatic cells for treating infection is a grizzled dream of scientists. Luckily, iPSC-derived cells combat the major problems that arose in this field and still, there are no legal and ethical bindings as well as immunological rejections. Later, the β cell of the pancreas has derived from PSCs from various patients who have diabetes. The study proves there is a wide possibility of demonstrating and rectification of clinical administration of these newly developing trends. The use of stem cell therapy in vitro, which is explicit patient research, shows various concerns related to the pathophysiology of diabetes. Successful application of procedures of screening of the apoptosis of β-cells from inbuilt cell retrieval needed to be a proper arrangement of new cell lines.

Downloads

Download data is not yet available.

References

Aitken JP, Ortiz C, Morales-Bozo I, Rojas-Alcayaga G, Baeza M, Beltran C, Escobar A. α-2-macroglobulin in saliva is associated with glycemic control in patients with type 2 diabetes mellitus. Dis. Markers. 2015 Mar;128653. doi: 10.1155/2015/128653.

Harita N, Hayashi T, Sato KK, Nakamura Y, Yoneda T, Endo G, Kambe H. Lower serum creatinine is a new risk factor of type 2 diabetes: the Kansai healthcare study. Diabetes Care. 2009; 32:424–426.

Pandey R, Dingari NC, Spegazzini N, Dasari RR, Horowitz GL, Barman I. Emerging trends in optical sensing of glycemic markers for diabetes monitoring, Trends Analyt. Chem. 2015; 64: 100-108.

Ravindran R, Gopinathan DM, Sukumaran S. Estimation of Salivary Glucose and Glycogen Content in Exfoliated Buccal Mucosal Cells of Patients with Type II Diabetes Mellitus. J Clin Diagn Res. 2015 May;9(5):ZC89-93. doi: 10.7860/JCDR/2015/11633.5971. Epub 2015 May 1. PMID: 26155572; PMCID: PMC4484164.

Molitoris BA. Acute kidney injury. In Goldman L, Ausiello D, editors. Cecil Medicine. 23rd ed. Philadelphia, Pa: Saunders Elsevier; 2007. p. chap 121

Kadashetti V, Baad R, Malik N, Shivakumar KM, Vibhute N, Belgaumi U, Gugawad S, Pramod RC. Glucose level estimation in Diabetes mellitus by saliva: A Bloodless Revolution, Rom. J. Intern. Med. 2015; 53:248-252.

American Diabetes Association. Standards of medical care in diabetes: 2009. Diabetes Care. 2009;32(Suppl. 1): S13–S61.

Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003 Feb 13;348(7):593-600. doi: 10.1056/NEJMoa022287. PMID: 12584367.

Tapp RJ, Tikellis G, Wong TY, Harper CA, Zimmet PZ, Shaw JE. Australian Diabetes Obesity and Lifestyle Study Group. Longitudinal association of glucose metabolism with retinopathy: results from the Australian Diabetes Obesity and Lifestyle (AusDiab) study. Diabetes Care. 2008; 31: 1349-1354.

Stehouwer CD, Henry RM, Dekker JM, Nijpels G, Heine RJ, Bouter LM. Microalbuminuria is associated with impaired brachial artery, flow-mediated vasodilation in elderly individuals without and with diabetes: further evidence for a link between microalbuminuria and endothelial dysfunction--the Hoorn Study. Kidney Int Suppl. 2004; S42–S44.

Gupta S, Sandhu SV, Bansal H, Sharma D. Comparison of Salivary and Serum Glucose Levels in Diabetic Patients. Journal of Diabetes Science and Technology. 2015;9(1):91-96. doi:10.1177/1932296814552673.

Belce A, Uslu E, Kucur M, Umut M, Ipbüker A, Seymen HO. Evaluation of salivary sialic acid level and Cu-Zn superoxide dismutase activity in type 1 diabetes mellitus. Tohoku J Exp Med. 2000 Nov;192(3):219-25. doi: 10.1620/tjem.192.219. PMID: 11249151.

Negrato CA, Tarzia O. Buccal alterations in diabetes mellitus. Diabetol Metab Syndr. 2010 Jan 15;2:3. doi: 10.1186/1758-5996-2-3. PMID: 20180965; PMCID: PMC2843640.

Soares MS, Batista-Filho MM, Pimentel MJ, Passos IA, Chimenos-Küstner E. Determination of salivary glucose in healthy adults. Med. Oral. Patol. Oral. Cir. Bucal. 2009 Oct 1; 14(10):e510-513.

Fujii S, Maeda T, Noge I, Kitagawa Y, Todoroki K, Inoue K, Min JZ, Toyo'oka T. Determination of acetone in saliva by reversed-phase liquid chromatography with fluorescence detection and the monitoring of diabetes mellitus patients with ketoacidosis. Clin. Chim. Acta. 2014; 430:140-144.

Lotfy M, Adeghate J, Kalasz H, Singh J, Adeghate E. Chronic complications of diabetes mellitus: a mini review. Current diabetes reviews. 2017;13(1):3-10.

Chen W, Guo M, Wang S. Anti prostate cancer using PEGylated bombesin containing, cabazitaxel loading nanosized drug delivery system. Drug Development and Industrial Pharmacy. 2016;42(12):1968–1976.

Meglitinide - an overview | ScienceDirect Topics

Patlak M. New weapons to combat an ancient disease: treating diabetes. FASEBJournal. 2002Dec;16(14):1853. doi:10.1096/fj.020974bkt.

Seino S.Cell signaling in insulin secretion: the molecular targets of ATP, cAMP, and sulfonylurea. Diabetologia. 2012 Aug;55(8):2096–2108. doi:10.1007/s00125-012-25629.

Derosa G, Maffioli P. α-Glucosidase inhibitors and their use in clinical practice. Arch Med Sci. 2012 Nov;8(5):899-906. doi: 10.5114/aoms.2012.31621. Epub 2012 Nov 7.

Bradley C. The glitazones: a new treatment for type 2 diabetes mellitus. Intensive Crit Care Nurs. 2002 Jun;18(3):189-91. doi: 10.1016/s0964-3397(02)00010-1.

Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications. J Appl Microbiol. 2019 Dec;127(6):1612-1626. doi: 10.1111/jam.14290. Epub 2019 Jun 17.

Gupta V, Sanjay K. Choosing a gliptin. Indian journal of endocrinology and metabolism vol. 2011;15(4): 298-308. doi:10.4103/2230-8210.85583.

Seoudy AK, Schulte DM, Hollstein T, Böhm R, Cascorbi I, Laudes M. Gliflozins for the Treatment of Congestive Heart Failure and Renal Failure in Type 2 Diabetes. Dtsch Arztebl Int. 2021 Feb 26;118(Forthcoming):122–9. doi: 10.3238/arztebl.m2021.0016.

Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013 Feb 22;8(1):102. doi: 10.1186/1556-276X-8-102.

Yücel Ç, Karatoprak GŞ, Aktaş Y. Nanoliposomal Resveratrol as a Novel Approach to Treatment of Diabetes Mellitus. J NanosciNanotechnol. 2018 Jun 1;18(6):3856-3864. doi: 10.1166/jnn.2018.15247.

Bhosale RR, Ghodake PP, Mane AN, Ghadge AA. Nanocochleates: A novel carrier for drug transfer. Journal of Scientific and Innovative Research. 2013; 2 (5): 964-969.

Tilawat M, Bonde S. Nanocochleates: A potential drug delivery system. Journal of Molecular Liquids. 2021 July; 334:1-11. doi:10.1016/J.MOLLIQ.2021.116115.

Yücel Ç, Gökçe SK, Atmar A. Novel Resveratrol-Loaded Nanocochleates and Effectiveness in the Treatment of Diabetes. Fabad Journal of Pharmaceutical Sciences. 2018;43(2):35-44.

Chandu VP, Arunachalam A, Jeganath S, Yamini K, Tharangini K, Chaitanya G. Niosomes: A novel drug delivery system. 2012 Feb;2(1):25-31.

Sharma PK, Saxena P, Jaswanth A, Chalamaiah M, Balasubramaniam A. Anti-Diabetic Activity of Lycopene Niosomes: Experimental Observation. J Pharm Drug Devel. 2017; 4(1): 103. doi: 10.15744/2348-9782.4.103.

Mei L, Qiujun Q, Xiang L, Xinrong L, Jing S, Cunyang W, Xiangyun L, Yihui D. YanzhiSong,Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents, Asian Journal of Pharmaceutical Sciences. 2019;14(3):265-274 .https://doi.org/10.1016/j.ajps.2018.05.011.

Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules. 2020 Aug;25(16):3731. doi: 10.3390/molecules25163731.

Chauhan P, Tamrakar AK, Mahajan S, Prasad GBKS. Chitosan encapsulated nanocurcumin induces GLUT-4 translocation and exhibits enhanced anti-hyperglycemic function. Life Sci. 2018 Nov 15; 213:226-235. doi: 10.1016/j.lfs.2018.10.027.

Sonia TA, Sharma CP. An overview of natural polymers for oral insulin delivery. Drug Discov Today. 2012 Jul;17(13-14):784-92. doi: 10.1016/j.drudis.2012.03.019.

Nie X, Chen Z, Pang L, Wang L, Jiang H, Chen Y, Zhang Z, Fu C, Ren B, Zhang J. Oral Nano Drug Delivery Systems for the Treatment of Type 2 Diabetes Mellitus: An Available Administration Strategy for Antidiabetic Phytocompounds. Int J Nanomedicine. 2020; 15:10215-10240.

Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kaushik A, Kim KH, Kumar S. Antidiabetic activity enhancement in streptozotocin + nicotinamide-induced diabetic rats through combinational polymeric nanoformulation. International Journal of Nanomedicine. 2019; 14:4383-4395. doi: 10.2147/IJN.S205319.

Hamid Akash MS, Rehman K, Chen S. Natural and Synthetic Polymers as Drug Carriers for Delivery of Therapeutic Proteins. Polymer Reviews. 2015; 55(3):371-406. doi:10.1080/15583724.2014.995806.

Bassas-galia M, Follonier S, Pusnik M, Zinn M. 2-Natural polymers: A source of inspiration. In: Perale G, Hilborn J, editors. Bioresorbable polymers for biomedical applications. 2017;31-64. https://doi.org/10.1016/B978-0-08-100262-9.00002-1.

Mir M, Ahmed N, Rehman AU. Recent applications of PLGA bPLGA-basedtructures in drug delivery. Colloids Surf B Biointerfaces. 2017 Nov 1; 159:217-231. doi: 10.1016/j.colsurfb.2017.07.038.

Samadder A, Abraham SK, Khuda-Bukhsh AR. NanopharmNano pharmaceutical using pelargonidin towards enhancement of efficacy for prevention of alloxan-induced DNA damage in L6 cells via activation of PARP and p53. Environ ToxicolPharmacol. 2016 Apr; 43:27-37. doi: 10.1016/j.etap.2016.02.010.

Chitkara D, Nikalaje SK, Mittal A, Chand M, Kumar N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin –induced model. Drug Deliv Transl Res. 2012 Apr;2(2):112-23. doi: 10.1007/s13346-012-0063-5.

Torché AM, Jouan H, Le Corre P, Albina E, Primault R, Jestin A, Le Verge R. Ex vivo and in situ PLGA microspheres uptake by pig ileal Peyer's patch segment. Int J Pharm. 2000 May 15;201(1):15-27. doi: 10.1016/s0378-5173(00)00364-1.

Mohseni R, ArabSadeghabadi Z, Ziamajidi N, Abbasalipourkabir R, RezaeiFarimani A. Oral Administration of Resveratrol-Loaded Solid Lipid Nanoparticle Improves Insulin Resistance Through Targeting Expression of SNARE Proteins in Adipose and Muscle Tissue in Rats with Type 2 Diabetes. Nanoscale Res Lett. 2019; 14: 227. https://doi.org/10.1186/s11671-019-3042-7

Xu HY, Liu CS, Huang CL, Chen L, Zheng YR, Huang SH, Long XY. Nanoemulsion improves hypoglycemic efficacy of berberine by overcoming its gastrointestinal challenge. Colloids Surf B Biointerfaces. 2019 Sep; 181:927-934. doi: 10.1016/j.colsurfb.2019.06.006.

Gottschalk F, Nowack B. The release of engineered nanomaterials to the environment. J Environ Monit. 2011 May;13(5):1145-55. doi: 10.1039/c0em00547a.

Pednekar PP, Godiyal SC, Jadhav KR, Kadam VJ. Mesoporous silica nanoparticles: a promising multifunctional drug delivery system. Nanostructures for Cancer Therapy. 2017;23:593–621. doi:10.1016/b978-0-323-46144-3.00023-4

Huang PK, Lin SX, Tsai MJ, Leong M, Lin SR, Kankala R, Lee CH, Weng CF. Encapsulation of 16-Hydroxycleroda-3,13-Dine-16,15-Olide in Mesoporous Silica Nanoparticles as a Natural Dipeptidyl Peptidase-4 Inhibitor Potentiated Hypoglycemia in Diabetic Mice. Nanomaterials. 2017; 7(5): 112. doi:10.3390/nano7050112.

Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Shi Y, Deng H. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009 Apr;19(4):429-38. doi: 10.1038/cr.2009.28.

Borowiak M, Maehr R, Chen S, Chen AE, Tang W, Fox JL, Schreiber SL, Melton DA. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell. 2009 Apr 3;4(4):348-58. doi: 10.1016/j.stem.2009.01.014.

Wandzioch E, Zaret, KS. Dynamic signaling network for the specification of embryonic pancreas and liver progenitors. Science. 2009; 324(5935):1707–1710.

Andreia SB, Candy HHC, Sharon M, Hilary MD, Roger AP, Ludovic V, Kevin D. Biphasic Induction of Pdx1 in Mouse and Human Embryonic Stem Cells Can Mimic Development of Pancreatic β-Cells. Stem Cells. 2009 February; 27(2):341–351.https://doi.org/10.1634/stemcells.2008-0310.

Chen S, Malgorzata B, Julia LF, René M, Kenji O, Lance D, Kelvin L, Lee FP, Stuart LS, Lee LR, Douglas M. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nature Chemical Biology. 2009; 5(4): 258–265.

Thatava T, Nelson TJ, Edukulla R, Sakuma T, Ohmine S, Tonne JM, Yamada S, Kudva Y, Terzic A, Ikeda Y. Indolactam V/GLP-1-mediated differentiation of human iPS cells into glucose-responsive insulin-secreting progeny. Gene Ther. 2011 Mar;18(3):283-93. doi: 10.1038/gt.2010.145.

Kunisada Y, Tsubooka-Yamazoe N, Shoji M, Hosoya M. Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res. 2012 Mar;8(2):274-84. doi: 10.1016/j.scr.2011.10.002.

Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15768-73. doi: 10.1073/pnas.0906894106.

Tateishi K, He J, Taranova O, Liang G, D'Alessio AC, Zhang Y. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem. 2008 Nov 14;283(46):31601-7. doi: 10.1074/jbc.M806597200. Epub 2008 Sep 9.

Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, Gauvin R, Narayan K, Karanu F, O'Neil JJ, Ao Z, Warnock GL, Kieffer TJ. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes. 2012 Aug;61(8):2016-29. doi: 10.2337/db11-1711. Epub 2012 Jun 27.

Alipio Z, Liao W, Roemer EJ, Waner M, Fink LM, Ward DC, Ma Y. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci U S A. 2010 Jul;107(30):13426-31. doi: 10.1073/pnas.1007884107.

Jeon K, Lim H, Kim JH, Thuan NV, Park SH, Lim YM, Choi HY, Lee ER, Kim JH, Lee MS, Cho SG. Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model. Stem Cells Dev. 2012 Sep;21(14):2642-55. doi: 10.1089/scd.2011.0665.

Bouwens L, Pipeleers DG. Extra-insular β-cells associated with ductules are frequent in adult human pancreas. Diabetologia. 1998; 41:629–633.

Bouwens L, Rooman I. Regulation of pancreatic β-cell mass. Physiol Rev. 2005; 85:1255–1270.

Mateizel I, Temmerman ND, Ullmann U, Cauffman G, Sermon K, Velde HV, Rycke MD, Degreef E, Devroey P, Liebaers I, Steirteghem AV. Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Human Reproduction. 2006; 21(2): 503–511.

Lee G, Studer L. Induced pluripotent stem cell technology for the study of human disease. Nature Methods. 2010; 7(1): 25–27.

Kudva YC, Ohmine S, Greder LV, Dutton JR, Armstrong A, De Lamo JG, Khan YK, Thatava T, Hasegawa M, Fusaki N, Slack JM, Ikeda Y. Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med. 2012 Jun;1(6):451-61. doi: 10.5966/sctm.2011-0044.

Wernig M, Meissner A, Cassady JP, Jaenisch R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell. 2008 Jan;2(1):10-2. doi: 10.1016/j.stem.2007.12.001.

Obokata H, Sasai Y, Niwa H, Kadota M, Andrabi M, Takata N, Tokoro M, Terashita Y, Yonemura S, Vacanti CA, Wakayama T. Bidirectional developmental potential in reprogrammed cells with acquired pluripotency. Nature. 2014; 505(7485): 676–680. doi:10.1038/nature12969.

Byrne MM, Sturis J, Clément K, Vionnet N, Pueyo ME, Stoffel M, Takeda J, Passa P, Cohen D, Bell GI, et al. Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J Clin Invest. 1994 Mar;93(3):1120-30. doi: 10.1172/JCI117064.

Van AFA, Aerts L, De PF. A morphological study of the endocrine pancreas in human pregnancy. Br J ObstetGynaecol. 1978; 85:818–820.

Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA. Very slow turnover of β-cells in aged adult mice. Diabetes. 2005; 54:2557–2567.

Aleti R, Baratam SR, Jagirapu B, Kudamala S. Formulation and evaluation of metformin hydrochloride and gliclazide sustained release bilayer tablets: a combination therapy in management of diabetes. International Journal of Applied Pharmaceutics. 2021; 13(5): 343–350. https://doi.org/10.22159/ijap.2021v13i5.41339.

Kondeti HP, Dannana GS. Development and validation of a stability-indicating rp-hplc method for the estimation of metformin, saxagliptin, and dapagliflozin. Asian Journal of Pharmaceutical and Clinical Research. 2022 Feb;15(3):72-77. doi:10.22159/ajpcr.2022.v15i3.42117.

Mussttaf GS, Habib A, Mahtook M. Drug prescribing pattern and cost-effectiveness analysis of oral antidiabetic drugs in patients with type-2 diabetes mellitus: real-world data from indian population. Asian Journal of Pharmaceutical and Clinical Research. 2021 May;14(7): 45-49. doi:10.22159/ajpcr.2021.v14i7.41677.

Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of β-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. American Diabetes Association. 1995; 44:249–256. doi: 10.2337/diab.44.3.249.

Published

24-01-2023

How to Cite

SARKAR, S., SADHU, S., ROY, R., TARAFDAR, S., MUKHERJEE, N., SIL, M., GOSWAMI, A., & MADHU, N. R. (2023). CONTEMPORARY DRIFTS IN DIABETES MANAGEMENT. International Journal of Applied Pharmaceutics, 15(2). https://doi.org/10.22159/ijap.2023v15i2.46792

Issue

Section

Review Article(s)