SOLID LIPID NANOPARTICLES: A REVIEW ON DIFFERENT TECHNIQUES AND APPROACHES TO TREAT BREAST CANCER

Authors

  • SHILPA A. GAJBHIYE Department of Pharmaceutics, MET’s Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nasik 422003, Maharashtra, India https://orcid.org/0000-0002-2027-184X
  • MORESHWAR P. PATIL Department of Pharmaceutics, MET’s Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nasik 422003, Maharashtra, India

DOI:

https://doi.org/10.22159/ijap.2023v15i2.46970

Keywords:

Breast cancer, Efficacy, Multi-drug resistance, Effective Targeting, Therapeutics, Intracellular pathways

Abstract

Breast cancer, the most common malignancy among women, is also the second-leading cause of cancer deaths all over the world. As commonly used chemotherapy drugs, which are given systematically, causes toxicity not only to cancerous cells but also to proliferating normal cells. Similarly, drug resistance leads to drastic side effects and treatment failure. Thus arises the need for improving the therapeutic index of anticancer drugs. Owing to these failures, nanotechnology holds significant promises.

Using keywords like multi-drug resistance, effective targeting, therapeutics, intracellular pathways, efficacy, and breast cancer, references were looked up from specialised databases including Elsevier, Pubmed, and Cambridge from the year 1994 to 2023. This review was supplemented by a few references from Springer Nature and pertinent data from an online source. Along with online articles from Medscape, StatPearls, and The Lancet Respiratory Medicine, it was excellent.

Supported literature was used to overcome these challenges; therapeutic drugs are encapsulated in nanoparticles. Concurrently, solid lipid nanoparticles (SLN), with their few merits, like enhancing the therapeutic profile, overcoming multidrug resistance, providing a targeted approach, and serving as a controlled release, have gained the attention of researchers. SLNs confine significant promises, overcome these challenges, and help to possibly deliver the drug to a specific part of the body, particular organ, or tissue by an actively or passively targeted delivery system, which will be beneficial in the diagnosis and treatment of breast cancer. The objective of this article is to highlight the factors that influence the targeted drug delivery system and resultant bioavailability and also provide updates on recent research and various approaches used for breast drug delivery systems.

Downloads

Download data is not yet available.

References

Nounou MI, Elamrawy F, Ahmed N, Abdelraouf K, Goda S. Syed-Sha-Qhattal H. Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies supplementary issue: targeted therapies in breast cancer treatment. Breast Cancer Basic Clin Res. 2015;9(2):17-34.

Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59(6):491-504. doi: 10.1016/j.addr.2007.04.008, PMID 17532091.

Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291-309. doi: 10.2147/IJN.S146315, PMID 29042776.

Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett. 2021;16(1):173. doi: 10.1186/s11671-021-03628-6, PMID 34866166.

Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on the brain. J Control Release. 1999;59(3):299-307. doi: 10.1016/s0168-3659(99)00007-3, PMID 10332062.

Güney G, Kutlu HM. Importance of solid lipid nanoparticles in cancer therapy. Technical. 2011;3:400-3.

Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.

Bayon Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel). 2019;9(3):474. doi: 10.3390/nano9030474, PMID 30909401.

Nakamura Y, Mochida A, Peter L, Choyke HK. Nano-drug delivery: is the enhanced permeability and retention (EPR) effect sufficient for curing cancer? Physiol Behav. 2016;27(10):2225-38.

Makki J. Diversity of breast carcinoma: histological subtypes and clinical relevance. Clin Med Insights Pathol. 2015;8(1):23-31. doi: 10.4137/CPath.S31563, PMID 26740749.

Das P, Das S, Jana A, Das TK. Demograph ic, clinicopathological profile, and immunohistochemistry study in female breast cancer in eastern India: a hospital-based retrospective study. Journal of Pharmaceutical and Clinical Research 2022;15(12):1-4.

Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 2015;15(1):71. doi: 10.1186/s12935-015-0221-1, PMID 26180516.

Chorma A, Pargi AK, Yadav R. A comparative study of drainage of breast abscess by conventional incision and drainage versus suction drainage versus ultrasound-guided needle aspiration. Asian J Pharm Clin Res. 2022;15(11):29-31. doi: 10.22159/ajpcr.2022.v15i11.45696.

Nair SS, Varkey J. Isolation of phytoconstituent, in vitro anticancer study in Hela and Mcf-7 cell lines and molecular docking studies of Pothos scandens Linn. Int J Curr Pharm Sci. 2021;13(5):42-51. doi: 10.22159/ijcpr.2021v13i5.1882.

Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab Dispos. 2014;42(4):623-31. doi: 10.1124/dmd.113.056176, PMID 24492893.

Al-Akra L, Bae DH, Leck LYW, Richardson DR, Jansson PJ. The biochemical and molecular mechanisms involved in the role of tumor micro-environment stress in the development of drug resistance. Biochim Biophys Acta Gen Subj. 2019;1863(9):1390-7. doi: 10.1016/j.bbagen.2019.06.007. PMID 31202693.

Abraham J, Edgerly M, Wilson R, Chen C, Rutt A, Bakke S. A phase I study of the P-glycoprotein antagonist tariquidar in combination with vinorelbine. Clin Cancer Res. 2009;15(10):3574-82. doi: 10.1158/1078-0432.CCR-08-0938, PMID 19417029.

Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis. 2017;9(3):448-51. doi: 10.21037/jtd.2017.02.75, PMID 28449441.

Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana Hulin M. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol. 2005;23(19):4265-74. doi: 10.1200/JCO.2005.04.173, PMID 15911866.

Guan SKY, JL. Breast cancer: multiple subtypes within a tumor? Syn Physiol Behav. 2017;3(11):753-60.

Kreike B, Van Kouwenhove M, Horlings H, Weigelt B, Peterse H, Bartelink H. Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res. 2007;9(5):R65. doi: 10.1186/bcr1771, PMID 17910759.

Wu J. The enhanced permeability and retention (Epr) effect: the significance of the concept and methods to enhance its application. J Pers Med. 2021;11(8):771-5. doi: 10.3390/jpm11080771, PMID 34442415.

Lu RM, Chen MS, Chang DK, Chiu CY, Lin WC, Yan SL. Targeted drug delivery systems mediated by a novel peptide in breast cancer therapy and imaging. PLOS ONE. 2013;8(6):e66128. doi: 10.1371/journal.pone.0066128, PMID 23776619.

Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell. 2020;181(1):151-67. doi: 10.1016/j.cell.2020.02.001, PMID 32243788.

Jahan S, Karim ME, Chowdhury EH. Nanoparticles targeting receptors on breast cancer for efficient delivery of chemotherapeutics. Biomedicines. 2021;9(2):1-30. doi: 10.3390/biomedicines9020114, PMID 33530291.

De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133-49. doi: 10.2147/ijn.s596, PMID 18686775.

Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185-98. doi: 10.1111/jphp.13098, PMID 31049986.

Tajbakhsh A, Hasanzadeh M, Rezaee M, Khedri M, Khazaei M, ShahidSales S. Therapeutic potential of novel formulated forms of curcumin in the treatment of breast cancer by the targeting of cellular and physiological dysregulated pathways. J Cell Physiol. 2018;233(3):2183-92. doi: 10.1002/jcp.25961, PMID 28419458.

Yu B, Tai HC, Xue W, Lee LJ, Lee RJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol. 2010;27(7):286-98. doi: 10.3109/09687688.2010.521200, PMID 21028937.

Chang JM, Leung JWT, Moy L, Ha SM, Moon WK. Axillary nodal evaluation in breast cancer: state of the art. Radiology. 2020;295(3):500-15. doi: 10.1148/radiol.2020192534, PMID 32315268.

Anatomy of the breast. Available from: https://www.mskcc.org/cancer-care/types/breast/anatomy-breast.

Gabriel A. Breast anatomy: overview, vascular anatomy and innervation of the breast, breast parenchyma and support structures; 2016. Available from: https://reference.medscape.com/article/1273133-overview#showall. [Last accessed on 28 Jan 2023]

Koo MM, von Wagner C, Abel GA, McPhail S, Rubin GP, Lyratzopoulos G. Typical and atypical presenting symptoms of breast cancer and their associations with diagnostic intervals: evidence from a national audit of a cancer diagnosis. Cancer Epidemiol. 2017;48:140-6. doi: 10.1016/j.canep.2017.04.010, PMID 28549339.

Kontermann RE. Immunoliposomes for cancer therapy. Curr Opin Mol Ther. 2006;8(1):39-45. PMID 16506524.

Sever R, Brugge JS. Signal transduction in cancer. Cold Spring Harb Perspect Med. 2015;5(4):a006098. doi: 10.1101/cshperspect.a006098, PMID 25833940.

Li X, Zhou J, Xiao M, Zhao L, Zhao Y, Wang S. Uncovering the subtype-specific molecular characteristics of breast cancer by multi-omics analysis of prognosis-associated genes, driver genes, signaling pathways, and immune activity. Front Cell Dev Biol. 2021;9:689028. doi: 10.3389/fcell.2021.689028, PMID 34277633.

Wesolowski R, Ramaswamy B. Gene expression profiling: changing face of breast cancer classification and management. Gene Expr. 2011;15(3):105-15. doi: 10.3727/105221611x13176664479241, PMID 22268293.

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen HP. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19):10869-74. doi: 10.1073/pnas.191367098, PMID 11553815.

Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5(10):2929-43. PMID 26693050.

Strehl JD, Wachter DL, Fasching PA, Beckmann MW, Hartmann A. Invasive breast cancer: recognition of molecular subtypes. Breast Care (Basel). 2011;6(4):258-64. doi: 10.1159/000331339, PMID 22135623.

Yersal O, Barutca S. Biological subtypes of breast cancer: prognostic and therapeutic implications. World J Clin Oncol. 2014;5(3):412-24. doi: 10.5306/wjco.v5.i3.412, PMID 25114856.

Luo X, Lia Y, Hua Zhenglai, Xiaoxia Xue X, Wang MP, Xiao C. Exosomes-mediated tumor metastasis through reshaping tumor microenvironment and distant niche. ScienceDirect; 2023. p. 327-36.

Ekyalongo RC, Yee D. Revisiting the IGF-1R as a breast cancer target. NPJ Precis Oncol. 2017;1(1):1-6. doi: 10.1038/s41698-017-0017-y, PMID 29152592.

Mbeunkui F, Johann DJ. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol. 2009;63(4):571-82. doi: 10.1007/s00280-008-0881-9, PMID 19083000.

Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv Pharm Bull. 2017;7(3):339-48. doi: 10.15171/apb.2017.041, PMID 29071215.

Moo TA, Sanford R, Dang C, Morrow M. Overview of breast cancer therapy. PET Clin. 2018;13(3):339-54. doi: 10.1016/j.cpet.2018.02.006, PMID 30100074.

Tiwari G, Tiwari R, Bannerjee S, Sriwastawa B, Bhati L, Pandey S, Pandey P. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2-11. doi: 10.4103/2230-973X.96920, PMID 23071954.

Glassman PM, Muzykantov VR. Pharmacokinetic and pharmacodynamic properties of drug delivery systems. J Pharmacol Exp Ther. 2019;370(3):570-80. doi: 10.1124/jpet.119.257113, PMID 30837281.

Khalid A, Persano S, Shen H, Zhao Y, Blanco E, Ferrari M. Strategies for improving drug delivery: nanocarriers and microenvironmental priming. Expert Opin Drug Deliv. 2017;14(7):865-77. doi: 10.1080/17425247.2017.1243527. PMID 27690153.

Rong Yang R, Tuo Wei T, Hannah Goldberg H, Weiping Wang W, Kathleen Cullion K, P Kohane DS. Getting drugs across biological barriers. Adv Mater. 2017;29(37):1-54. doi: 10.1002/adma.201606596, PMID 28752600.

Kiptoo P, Calcagno AM, Siahaan TJ. Physiological, biochemical, and chemical barriers to oral drug delivery. Drug delivery: principles and applications. 2nd ed; 2016. p. 19-34.

Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17-38. doi: 10.1016/j.addr.2018.07.007, PMID 30009886.

Vasir J, Reddy M, Labhasetwar V. Nanosystems in drug targeting: opportunities and challenges. Curr Nanosci. 2006;1(1):47-64. doi: 10.2174/1573413052953110.

Tewabe A, Abate A, Tamrie M, Seyfu A, Abdela Siraj EA. Targeted drug delivery-from magic bullet to nanomedicine: principles, challenges, and future perspectives. J Multidiscip Healthc. 2021;14:1711-24. doi: 10.2147/JMDH.S313968, PMID 34267523.

Bazak R, Houri M, Achy SEL, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol Clin Oncol. 2014;2(6):904-8. doi: 10.3892/mco.2014.356.

Tajbakhsh A, Hasanzadeh M, Rezaee M, Khedri M, Khazaei M, ShahidSales S. Therapeutic potential of novel formulated forms of curcumin in the treatment of breast cancer by the targeting of cellular and physiological dysregulated pathways. J Cell Physiol. 2018;233(3):2183-92. doi: 10.1002/jcp.25961, PMID 28419458.

Guorgui J, Wang R, Mattheolabakis G, Mackenzie GG. Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodgkin’s lymphoma in mice. Archives of Biochemistry and Biophysics. 2018;648:12-9. doi: 10.1016/j.abb.2018.04.012, PMID 29679536.

Clemente N, Ferrara B, Gigliotti CL, Boggio E, Capucchio MT, Biasibetti E. Solid lipid nanoparticles carrying temozolomide for melanoma treatment. Preliminary in vitro and in vivo studies. Int J Mol Sci. 2018;19(2):255. doi: 10.3390/ijms19020255, PMID 29364157.

Shah MK, Madan P, Lin S. Preparation, in vitro evaluation and statistical optimization of carvedilol-loaded solid lipid nanoparticles for lymphatic absorption via oral administration. Pharm Dev Technol. 2014;19(4):475-85. doi: 10.3109/10837450.2013.795169, PMID 23697916.

Sinha R. Chronic stress, drug use, and vulnerability to addiction ajita. Bone. Ann NY Acad Sci. 2008;1141:105-30. doi: 10.1196/annals.1441.030, PMID 18991954.

Muller WA. Getting leukocytes to the site of inflammation. Bone Vet Pathol. 2013;50(1):7-22. doi: 10.1177/0300985812469883, PMID 23345459.

Maeda H. Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the EPR effect for tumor-selective drug targeting. Proc Japapn Acad Ser B Phys Biol Sci. 2012;88(3):53-71. doi: 10.2183/pjab.88.53, PMID 22450535.

Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1410. doi: 10.1038/s41467-018-03705-y, PMID 29650952.

Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent advances in tumor targeting via epr effect for cancer treatment. J Pers Med. 2021;11 (6):571. doi: 10.3390/jpm11060571, PMID 34207137.

Lee MK, Lim SJ, Kim CK. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials. 2007;28(12):2137-46. doi: 10.1016/j.biomaterials.2007.01.014, PMID 17257668.

Ficai A, Grumezescu AM. Nanostructures for cancer therapy. Nanostruct Cancer Ther. 2017:1-882.

Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 2016;68(3):701-87. doi: 10.1124/pr.115.012070, PMID 27363439.

Zhao Y, Huan ML, Liu M, Cheng Y, Sun Y, Cui H. Doxorubicin and resveratrol co-delivery nanoparticle to overcome doxorubicin resistance. Sci Rep. 2016;6:1–1535267. doi: 10.1038/srep35267, PMID 27731405.

Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818-22. doi: 10.1126/science.1095833, PMID 15031496.

Baas J, Senninger N, Elser H. The reticuloendothelial system. An overview of the function, pathology and recent methods of measurement. Z Gastroenterol. 1994;32(2):117-23. PMID 8165827.

Colino CI, Lanao JM, Gutierrez Millan C. Targeting of hepatic macrophages by therapeutic nanoparticles. Front Immunol. 2020;11:218. doi: 10.3389/fimmu.2020.00218, PMID 32194546.

Wang L, Hu C, Shao L. The-antimicrobial-activity-of-nanoparticles-present-situation. Int J Nanomedicin. 2017;12:1227-49.

Stolnik S, Daudali B, Arien A, Whetstone J, Heald CR, Garnett MC. The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochim Biophys Acta Biomembr. 2001;1514(2):261-79. doi: 10.1016/s0005-2736(01)00376-5, PMID 11557026.

Singh S, Kushwaha AK, Vuddanda PR, Karunanidhi P, Singh SK Kushwaha AK, Vuddanda PR, Karunanidhi P, Singh SK, Singh S. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. BiomMed Res Int. 2013;584549. doi: 10.1155/2013/584549, PMID 24228255.

Preta G. New insights into targeting membrane lipids for cancer therapy. Front Cell Dev Biol. 2020;8:1–1057-237. doi: 10.3389/fcell.2020.571237, PMID 32984352.

Gocheva G, Ivanova A. A look at receptor-ligand pairs for active-targeting drug delivery from crystallographic and molecular dynamics perspectives. Mol Pharm. 2019;16(8):3293-321. doi: 10.1021/acs.molpharmaceut.9b00250, PMID 31274322.

Nishioka Y, Yoshino H. Lymphatic targeting with the nanoparticulate system. Adv Drug Deliv Rev. 2001;47(1):55-64. doi: 10.1016/s0169-409x(00)00121-6, PMID 11251245.

Bhagwat GS, Athawale RB, Gude RP S, Alhakamy NA, Fahmy UA. Formulation and development of transferrin-targeted solid lipid nanoparticles for breast cancer therapy. Front Pharmacol. 2020;111–12.

Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Advanced Drug Delivery Reviews. 2013;65(1):121-38. doi: 10.1016/j.addr.2012.09.041, PMID 23026636.

Lu B, Xiong S BinXiong SB, Yang H, Yin XD, Chao RB. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci. 2006;28(1-2):86-95. doi: 10.1016/j.ejps.2006.01.001, PMID 16472996.

Shulpekova Y, Nechaev V, Kardasheva S, Sedova A, Kurbatova A, Bueverova E. The concept of folic acid in health and disease. Molecules. 2021;26(12):1-29. doi: 10.3390/molecules26123731, PMID 34207319.

Cheung A, Bax HJ, Josephs DH, Ilieva KM, Pellizzari G, Opzoomer J. Targeting folate receptor alpha for cancer treatment. Oncotarget. 2016;7(32):52553-74. doi: 10.18632/oncotarget. 9651, PMID 27248175.

Dharap SS, Wang Y, Chandna P, Khandare JJ, Qiu B, Gunaseelan S. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc Natl Acad Sci USA. 2005;102(36):12962-7. doi: 10.1073/pnas.0504274102, PMID 16123131.

Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev. 2002;54(5):675-93. doi: 10.1016/s0169-409x(02)00042-x, PMID 12204598.

Goldstein JL, Anderson RG, Brown MS. Receptor-mediated endocytosis and the cellular uptake of low-density lipoprotein. Ciba Foundation Symposium. 1982;(92):77-95. doi: 10.1002/9780470720745.ch5, PMID 6129958.

Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 2016;68(3):701-87. doi: 10.1124/pr.115.012070, PMID 27363439.

Campion O, Al Khalifa T, Langlois B, Thevenard Devy J, Salesse S, Savary K. Contribution of the low-density lipoprotein receptor family to breast cancer progression. Front Oncol. 2020;10:1–9882. doi: 10.3389/fonc.2020.00882, PMID 32850302.

Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev. 2003;24(4):389-427. doi: 10.1210/er.2002-0007, PMID 12920149.

Svensen N, Walton JGA, Bradley M. Peptides for cell-selective drug delivery. Trends Pharmacol Sci. 2012;33(4):186-92. doi: 10.1016/j.tips.2012.02.002, PMID 22424670.

Tan LTH, Chan KG, Pusparajah P, Lee WL, Chuah LH, Khan TM. Targeting membrane lipid a potential cancer cure? Front Pharmacol. 2017;8(12):1–612. doi: 10.3389/fphar.2017.00012, PMID 28167913.

Casares D, Escriba PV, Rossello CA. Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int J Mol Sci. 2019;20(9):2167. doi: 10.3390/ijms20092167, PMID 31052427.

Zalba S, Ten Hagen TL. Cell membrane modulation as adjuvant in cancer therapy. Cancer Treat Rev. 2017;52:48-57. doi: 10.1016/j.ctrv.2016.10.008, PMID 27889637.

Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. B cells and antibodies-molecular biology of the cell-NCBI bookshelf. Mol Biol Cell. 2002.

Leth Larsen R, Lund RR, Ditzel HJ. Plasma membrane proteomics and its application in clinical cancer biomarker discovery. Mol Cell Proteomics. 2010;9(7):1369-82. doi: 10.1074/mcp.R900006-MCP200, PMID 20382631.

Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006;66(13):6732-40. doi: 10.1158/0008-5472.CAN-05-4199, PMID 16818648.

Santos M, Butel JS. Detection of a complex of SV40 large tumor antigen and 53K cellular protein on the surface of SV40‐transformed mouse cells. J Cell Biochem. 1982;19(2):127-44. doi: 10.1002/jcb.240190204, PMID 6294133.

Yu B, Tai HC, Xue W, Lee LJ, Lee RJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol. 2010;27(7):286-98. doi: 10.3109/09687688.2010.521200, PMID 21028937.

Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2(1):3-44. doi: 10.7150/thno.3463, PMID 22272217.

Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018; 26(1):64-70. doi: 10.1016/j.jsps.2017.10.012, PMID 29379334.

Manasi D, Chandana M, Sanjeeb K, Das M, Mohanty C, Sahoo SK. Ligand-based targeted therapy for cancer tissue. Expert Opin Drug Deliv. 2009;6(3):285-304. doi: 10.1517/ 17425240902780166, PMID 19327045.

Zwicke GL, Mansoori GA, Jeffery CJ. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012;3. doi: 10.3402/nano.v3i0.18496. PMID 23240070.

Christensen E, Henriksen JR, Jørgensen JT, Amitay Y, Shmeeda H, Gabizon AA. Folate receptor targeting of radiolabeled liposomes reduces intratumoral liposome accumulation in human KB carcinoma xenografts. Int J Nanomedicine. 2018;13:7647-56. doi: 10.2147/IJN.S182579, PMID 30538449.

Ebbing M, Bønaa KH, Nygard O, Arnesen E, Ueland PM, Nordrehaug JE. Cancer incidence and mortality after treatment with folic acid and vitamin B12. JAMA-J Am Med Assoc. 2009;302(19):2119-26. doi: 10.1001/jama.2009.1622, PMID 19920236.

Ghazarian H, Idoni B, Oppenheimer SB. A glycobiology review: Ccarbohydrates, lectins and implications in cancer therapeutics. Acta Histochem. 2011;113(3):236-47. doi: 10.1016/j.acthis.2010.02.004, PMID 20199800.

Sicard JF, Le Bihan G Le, Vogeleer P, Jacques M, Harel J. Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol. 2017;7:387. doi: 10.3389/fcimb.2017.00387, PMID 28929087.

Calvo MB, Figueroa A, Pulido EG, Campelo RG, Aparicio LA. Potential role of sugar transporters in cancer and their relationship with anticancer therapy. Int J Endocrinol. 2010;2010. doi: 10.1155/2010/205357. PMID 20706540.

Varki A. Biological roles of glycans. Glycobiology. 2017;27(1):3-49. doi: 10.1093/glycob/cww086, PMID 27558841.

Yau T, Dan X, Ng CCW, Ng TB. Lectins with potential for anti-cancer therapy. Molecules. 2015;20(3):3791-810. doi: 10.3390/molecules20033791, PMID 25730388.

Jiang Z, Li T, Cheng H, Zhang F, Yang X, Wang S. Nanomedicine potentiates mild photothermal therapy for tumor ablation. Asian J Pharm Sci. 2021;16(6):738-61. doi: 10.1016/j.ajps.2021.10.001, PMID 35027951.

Van de Sande L, Cosyns S, Willaert W, Ceelen W. Albumin-based cancer therapeutics for intraperitoneal drug delivery: a review. Drug Deliv. 2020;27(1):40-53. doi: 10.1080/10717544.2019.1704945, PMID 31858848.

Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes and Cancer. 2011;2(12):1097-105. doi: 10.1177/1947601911423031, PMID 22866201.

Christian CA, Moenter SM. Vasoactive intestinal polypeptide can excite gonadotropin-releasing hormone neurons in a manner dependent on estradiol and gated by time of day. Endocrinology. 2008;149(6):3130-6. doi: 10.1210/en.2007-1098, PMID 18326000.

Lichtenstein M, Zabit S, Hauser N, Farouz S, Melloul O, Hirbawi J. Tat for enzyme/protein delivery to restore or destroy cell activity in human diseases. Life (Basel). 2021;11(9):924. doi: 10.3390/life11090924, PMID 34575072.

Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci. 2017;24(1):1–1521. doi: 10.1186/s12929-017-0328-x, PMID 28320393.

Parray HA, Shukla S, Samal S, Shrivastava T, Ahmed S. Elsevier has created a COVID-19 resource center with free information in English and mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information; 2020.

Manis JP. Overview of therapeutic monoclonal antibodies; 2022:1-18.

Rajesh S, Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215-23. doi: 10.1016/j.yexmp.2008.12.004, PMID 19186176.

Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27(1):1–31. doi: 10.1186/s12929-019-0592-z, PMID 31894001.

Songara NS, Bhargava AK, Chaudhary A, Sharma A. Assessment of magnesium (Mg) and zinc (Zn) in carcinoma breast patients. Asian J Pharm Clin Res. 2022;15(10):159-62. doi: 10.22159/ajpcr.2022.v15i10.45486.

Price PM, Mahmoud WE, Al-Ghamdi AA, Bronstein LM. Magnetic drug delivery: where the field is going. Front Chem. 2018;6:1–7619. doi: 10.3389/fchem.2018.00619, PMID 30619827.

Yao J, Feng J, Chen J. External-stimuli responsive systems for cancer theranostic. Asian J Pharm Sci. 2016;11(5):585-95. doi: 10.1016/j.ajps.2016.06.001.

Wang X, Liu S, Sun Y, Yu X, Lee SM, Cheng Q. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat Protoc. 2023;18(1):265-91. doi: 10.1038/s41596-022-00755-x. PMID 36316378.

Maeda H. Enhanced permeability and retention effect; 2021. Available from: https://en.wikipedia.org/wiki/Enhanced_permeability_and_retention_effect. [Last accessed on 28 Jan 2023]

Giang I, Boland EL, Poon GMK. Prodrug applications for targeted cancer therapy. AAPS J. 2014;16(5):899-913. doi: 10.1208/s12248-014-9638-z, PMID 25004822.

Uprety B, Abrahamse H. Targeting breast cancer and their stem cell population through AMPK activation: novel insights. Cells. 2022;11(3). doi: 10.3390/cells11030576, PMID 35159385.

Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther. 2022;7(1):379. doi: 10.1038/s41392-022-01243-0, PMID 36402753.

Parker CL, Mcsweeney MD, Lucas AT, Jacobs TM, Wadsworth D, Zamboni WC. Pretargeted delivery of PEG-coated drug carriers to breast tumors using the multivalent, bispecific antibody against polyethylene glycol and HER2. Nanomedicine. 2019;21:(102076.). doi: 10.1016/j.nano.2019.102076, PMID 31394261.

Hye JY, Cho YH, Moon Y, Young WP, Yoon HK, Kim YJ, Yun HJ, Cho YH, Moon Y, Park YW, Yoon HK, Kim YJ. Transcriptional targeting of gene expression in breast cancer by the promoters of protein regulator of cytokinesis 1 and ribonuclease reductase 2. Exp Mol Med. 2008;40(3):345-53. doi: 10.3858/emm.2008.40.3.345, PMID 18587273.

Published

07-03-2023

How to Cite

GAJBHIYE, S. A., & PATIL, M. P. (2023). SOLID LIPID NANOPARTICLES: A REVIEW ON DIFFERENT TECHNIQUES AND APPROACHES TO TREAT BREAST CANCER. International Journal of Applied Pharmaceutics, 15(2), 52–62. https://doi.org/10.22159/ijap.2023v15i2.46970

Issue

Section

Review Article(s)