THE INFLUENCE OF CATHARANTHUS ROSEUS (L.) G. DON. ETHANOL EXTRACT IN CLOVE OIL NANOEMULSION: PHYSICAL CHARACTERIZATION, ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES
DOI:
https://doi.org/10.22159/ijap.2023v15i3.47138Keywords:
Clove oil, Catharanthus roseus (L.) G. Don., nanoemulsion, stability, antioxidant, antibacterialAbstract
Objective: This study aimed to develop a topical nanoemulsion using clove oil and ethanol extract of Catharanthus roseus (L.) G. for antioxidant and antibacterial dosage form.
Methods: The nanoemulsion was produced using a spontaneous emulsification method. The formulation was carried out using Tween 80 and Pluronic 127 as surfactants with different extract concentration (0.5–2%). The characterizations of the formula included organoleptic test, homogeneity, pH determination, emulsion type, viscosity, particle size determination, zeta potential, and stability test were evaluated. Antioxidant activity was conducted using DPPH method and antibacterial activity was determined against Propionibacterium acnes and Staphylococcus epidermidis.
Results: The result showed that all the formulations produced a stable nanoemulsion with semisolid, clarity, transparent and homogenous characteristic. The nanoemulsion had pH of 5.5-6.5 and belong to oil in water (O/W) type of emulsion. The formula showed viscosity ranged from 121.33±0.29 until 211.01±1.00 cps, had particle size below than 300 nm, and were stable for 3 months of storage and after accelerated evaluation. Nanoemulsion contained 2% of C. roseus extract showed moderate antioxidant activity with IC50 value of 96.29 ± 3.64 and antibacterial activity with 10.65±0.15 and 13.27±0.21 mm of inhibition zones for Propionibacterium acnes and Staphylococcus epidermidis, respectively.
Conclusion: Clove oil combined with the ethanol extract of C. roseus produced a stable nanoemulsion, which demonstrated concentration-dependent antioxidant and antibacterial activities.
Downloads
References
Chaieb K, Hajlaoui H, Zmantar T, Kahla‐Nakbi AB, Rouabhia M, Mahdouani K, Bakhrouf A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother Res. 2007;21(6):501-506. doi: 10.1002/ptr.2124.
Kammon A, Almaeyoufi A, Asheg A. In vitro antimicrobial activity of clove oil against gram negative bacteria isolated from chickens. Appro Poult Dairy & Vet Sci. 2019; 6(2):542-546. doi: 10.31031/APDV.2019.06.000635.
Yadav AK, Ambasta SK, Prasad SK, Trvedi MP. In-vitro evaluation of antibacterial property of Catharanthus roseus (Linn.) G. Don. Var.“rosea” and “alba”. Int J Pharm Pharm Sci. 2018;10(5):55-58. doi: http://dx.doi.org/10.22159/ijpps.2018v10i5.24977
Ginting EV, Retnaningrum E, Widiasih DA. Antibacterial activity of clove (Syzygium aromaticum) and cinnamon (Cinnamomum burmannii) essential oil against extended-spectrum β-lactamase-producing bacteria. Vet World. 2021;14(8):2206-2211. doi: 10.14202/vetworld.2021.2206-2211 H.
Han X, Parke TL. Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts. Pharm Biol. 2017;55(1):1619-1622. doi:10.1080/13880209.2017.1314513.
Hosseini M, Shahedi AM, Rakhshandeh H. Analgesic effect of clove essential oil in mice. Avicenna J Phytomed. 2011; 1:1-6. doi:10.22038/AJP.2011.114.
Gulcin I, Elmastas M, Aboul-Enein HY. Antioxidant activity of clove oil-A powerful antioxidant source. Arabian J Chem. 2012;5(4):489-499. doi: 10.1016/j.arabjc.2010.09.016.
Shahavi MH, Hosseini M, Jahanshahi M, Meyer RL, Darzi GN. Clove oil nanoemulsion as an effective antibacterial agent: Taguchi optimization method. Desalin Water Treat. 2016; 57(39):18379-18390. doi: 10.1080/19443994.2015.1092893
Sun H, Luo D, Zheng SliZ, Xu W. Antimicrobial behavior and mechanism of clove oil nanoemulsion. J Food Sci Technol. 2022;59(5):1939-1974. doi: https://doi.org/10.1007/s13197-021-05208-z
Majeed A, Bashir R, Farooq S, Maqbool M. Preparation, characterization and applications of nanoemulsions: an insight, J Drug Delivery Ther. 2019;9(2):520-527. doi: 10.22270/jddt.v9i2.2410.
Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. Nanoemulsions. Curr Opin Colloid Interface Sci. 2005;10:102-110. doi: 10.1016/j.cocis.2005.06.004.
Aswathanarayan JB, Vittal RR. Nanoemulsions and their potential applications in food industry. Front Sustain Food Syst. 2019;3:95. doi: 10.3389/fsufs.2019.00095.
Maha HL, Sinaga KR, Masfria M. Formulation and evaluation of miconazole nitrate nanoemulsion and cream. Asian J Pharm Clin Res. 2018; 11(3): 319-321. doi: http://dx.doi.org/10.22159/ajpcr.2018.v11i3.22056
Tayeb HH, Sainsbury F. Nanoemulsions in drug delivery: formulation to medical application. Nanomedicine, 2018;13(19).doi: 10.2217/nnm-2018-0088.
Lonappan D, Krishnakumar K, Dineshkumar B. Nanoemulsion in pharmaceuticals. Am J PharmTech Res. 2018;8(2):1-14.
Marzuki NHC, Wahab RA, Hamid MA. An overview of nanoemulsion: concepts of development and cosmeceutical applications. Biotechnol Biotechnol Equip. 2019;33(1):779-797. doi: 10.1080/13102818.2019.1620124.
Sutradhar KB, Amin ML. Nanoemulsions: increasing possibilities in drug delivery. Eur J Nanomed. 2013; 5(2):97-110. doi: 10.1515/ejnm-2013-0001.
Savardekar P, Bajaj A. Nanoemulsion-a review. Int J Res Pharm Chem. 2016;6(2):312-322.
Liu C, Jin H, Yu Y, Sun J, Zheng H, Zhang Y, Xu J, Zhu X. The improvement of nanoemulsion stability and antioxidation via protein-chlorogenic acid-dextran conjugates as emulsifiers. Nanomaterials. 2020;10:1094. doi:10.3390/nano10061094.
Prasetyo BE, Maruhawa SM, Karsono, Laila L. Formulation and physical evaluation of castor oil based nanoemulsion for diclofenac sodium delivery system. Res J Pharm Technol. 2018;11(9):3861-3865. doi: 10.5958/0974-360X.2018.00707.2.
Prasetyo BE, Azmi N, Shamsuddin AF. Preparation and physical stability evaluation of palm oil-based nanoemulsion as a drug delivery system for propofol. Malays J Health Sci. 2018;16(2):5-13. doi: 10.17576/jskm-2018-1602-12.
Ferreira LM, Cervi VF, Gehrcke M, da Silveira EF, Azambuja JH, Braganhol E, Cruz L. Ketoprofen-loaded pomegranate seed oil nanoemulsion stabilized by pullulan: selective antiglioma formulation for intravenous administration. Colloids and Surfaces, B: Biointerfaces. 2015; 130:272-277.doi: 10.1016/j.colsurfb.2015.04.023.
Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF, Cheah SC, Mustafa MR, Awang K. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules, 2013;18(8):9770-9784. doi: 10.3390/molecules18089770.
Jaleel CA, Gopi R, Manivannan P, Panneerselvam R. Responses of antioxidant defense system of Catharanthus roseus(L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol Plant. 2007;29:205–209. doi: 10.1007/s11738-007-0025-6.
Raza ML, Nasir M, Abbas T, Naqvi BS. Antibacterial activity of different extracts from the Catharanthus roseus. Clin Exp Med J. 2009; 3(1):81-85. doi: 10.1556/CEMED.3.2009.1.7
Kyakulaga AH, Alinda TB, Vudriko P, Patrick OE. In vivo antidiarrheal activity of the ethanolic leaf extract of Catharanthus roseus Linn. (Apocyanaceae) in wistar rats. Afr J Pharm Pharmacol. 2011;5(15):1797-1800. doi:10.5897/AJPP11.505.
Mariadi, Prasetyo BE, Adela H, Wiladatika W. Formulation and characterization of nanoemulsion of tread leave ethanol extract (Catharanthus roseus (L.) G. Don) as antihyperglycemic. Indonesian J Pharm Clin Res. 2019;2(2):24-30. doi: 10.32734/idjpcr.v2i2.3204.
Nisar A, Mamat AS, Hatim MI, Aslam MS, Syarhabil M. An updated review on Catharanthus roseus: phytochemical and pharmacological analysis. Indian Res J Pharm Sci. 2016; 3(2): 631-653.
Suciati T, Aliyandi A, Satrialdi. Development of transdermal nanoemulsion formulation for simultaneous delivery of protein vaccine and artin-m adjuvant. Int J Pharm Pharm Sci. 2014;6(6): 536-546.
Iradhati AH, Jufri M. Formulation and physical stability test of griseofulvin microemulsion gel. Int J Appl Pharm. 2017; 9:23-26.doi: 10.22159/ijap.2017.v9s1.22_27.
Qorina F, Arsianti A, Fithrotunnisa Q, Tejaputri NA. Phytochemistry and antioxidant activity of soursop (Annona muricata) leaves. Int J Appl Pharm. 2019;11(Special Issue 6):1-6. doi: 10.22159/ijap.2019.v11s6.33524
Banne Y, Ponidjan TS, Dumanauw JM. Antioxidant and hepatoprotective activity of Abelmoschus manihot L. medik leaf fraction against CCL4-induced liver damage in rats. Int J Appl Pharm. 2019;11(3):17-19. doi: 10.22159/ijap.2019.v11s3.M1009.
Ardhany SD, Novaryatiin S. Antibacterial activity of ethanolic extract bawang dayak (Eleutherine bulbosa (Mill.) Urb) in cream against Propionibacterium Acnes. Int J Appl Pharm. 2019;11(5):1-4. doi:10.22159/ijap.2019.v11s5.T0020.
Lukic M, Pantelic I, Savic SD. Towards optimal ph of the skin and topical formulations: from the current state of the art to tailored products. Cosmetics. 2021;8:69. doi:10.3390/ cosmetics8030069.
Amin N, Das B. A review on formulation and characterization of nanoemulsion. Int J Curr Pharm Res. 2019;1-5. doi: http://dx.doi.org/10.22159/ijcpr.2019v11i4.34925
Badran M. Formulation and in vitro evaluation of flufenamic acid loaded deformable liposomes for improved skin delivery. Dig J Nanomater Biostructures. 2014;9(1):83-91.
Danaei M, Dehghankhold M, Ataei S, Davarani FH, Javanmard R, Dokhani A, Mozafari MR. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2): 57.doi:10.3390/pharmaceutics10020057
Shehzad Q, Rehman A, Ali A, Khan S, Mahdi AA, Karim A, Khan S,Yang F, Xia W. Preparation and characterization of resveratrol loaded nanoemulsions. Int J Agric Innov Res. 2020;8:300-310.
Suryani, Halid NHA, Akib NI, Rahmanpiu, Mutmainnah N. Preparation of curcumin nanoparticle by using reinforcement ionic gelation technique. AIP Conf. Proc. 2016;1838:020013 doi: 10.1063/1.4982185.
Ahmadi O, Malmiri HJ. Intensification process in thyme essential oil nanoemulsion preparation based on subcritical water as green solvent and six different emulsifiers. Green Process Synth. 2021;10: 430–439. doi:10.1515/gps-2021-0040.
Winarti L, Suwaldi, Martien R, Hakim L. Formulation of self nanoemulsifying drug delivery system of bovine serum albumin using HLB (hydrophillic-lipophillic balance) approach. Indonesian J Pharm. 2016;27(3):117-127. doi: 10.14499/indonesianjpharm27iss3pp117
Yuniarti R, Nadia S, Alamanda A, Zubir M, Syahputra RA, Nizam M. Characterization, phytochemical screenings and antioxidant activity test of kratom leaf ethanol extract (Mitragyna speciosa Korth) using DPPH method. 2020. J Phys: Conf Ser. 1462. doi:10.1088/1742-6596/1462/1/012026.
Shahbazi Y. Antibacterial and antioxidant properties of methanolic extracts of apple (Malus pumila), grape (Vitis vinifera), pomegranate (Punica granatum L.) and common fig (Ficus carica L.) fruits. Pharm Sci. 2017;24(4):308-15. doi: 10.15171/PS.2017.45.
Published
How to Cite
Issue
Section
Copyright (c) 2023 LIA LAILA; ANDY CANDRA; YADE METRI PERMATA, BAYU EKO PRASETYO

This work is licensed under a Creative Commons Attribution 4.0 International License.