FABRICATION AND DEVELOPMENT OF DISSOLVING MICRONEEDLE PATCH OF BUTORPHANOL TARTRATE
DOI:
https://doi.org/10.22159/ijap.2023v15i3.47411Keywords:
Butorphanol tartrate, Dissolving microneedles, Lapox resin mould, Mould casting, Axial fractured force, Box-Behnken design, Post-operative painAbstract
Objective: Butorphanol is a commonly used medication for the management of postoperative pain and suffers low bioavailability and high first-pass metabolism. The objective of the current studies was to develop a butorphanol tartrate-loaded dissolving microneedle patch to overcome the limitation of first-pass metabolism without causing any discomfort to the patient.
Methods: Butorphanol tartrate-loaded microneedle patch was prepared using Lapox resin micro-moulds. The microneedle patch was optimized using the Box-Behnken design and the quantity of PVA, HPMC K4M, and HPMC K15M was optimized and evaluated for axial fractured force, microscopic evaluation, in-vitro drug permeation studies, and ex-vivo permeation experiments.
Results: The developed microneedle patch meets all the evaluation parameters within the desired range. The height and tip diameter of the microneedles were found to be 700 µm to 800 µm and 60 µm to 61 µm. An axial fractured force of the optimized microneedle patch was found to be 189.67 N, suitable for penetrating the stratum corneum. The in-vitro cumulative % drug permeated showed the permeation of the drug for 8 h with a total of 89.12 %, which shows the permeation of the drug occurred in a controlled manner.
Conclusion: Butorphanol tartrate-loaded microneedle patch was successfully developed and the results concluded that the microneedles were hard enough to pass the stratum corneum and release the drug into the systemic circulation without reaching the pain receptors, further the release study suggested that the drug was released for a prolonged period eliminating the problem of first-pass effect and frequent administration.
Downloads
References
Mazda Y, Jadin S, Khan JS. Postoperative pain management. Can J Gen Intern. 2021 March;16(SP1):5-17. doi: 1022374/cjgim.v16iSP1.529.
Katz J, Jackson M, Kavanagh BP, Sandler AN. Acute pain after thoracic surgery predicts long-term post-thoracotomy pain. Clin J Pain. March 1996;12(1):50-5.
Sharrock NE, Cazan MG, Hargett MJL, Williams-Russo P, Wilson PD. Changes in mortality after total hip and knee arthroplasty over a ten-year period. Anesth Analg. 1995;80(2):242-8.
McQuay H. Opioids in pain management. Lancet. 1999;353(9171):2229-32. doi: https://doi.org/10.1016/S0140-6736(99)03528-X.
Philip BK, Reese PR, Burch SP. The economic impact of opioids on postoperative pain management. J Clin Anesth. 2002;14(5):354-64. doi: https://doi.org/10.1016/S0952-8180(02)00372-0.
Dobkin AB, Eamkaow S, Caruso FS. Butorphanol and pentazocine in patients with severe postoperative pain. Clin Pharmacol Ther. 1975;18(5part1):547-53. doi: https://doi.org/10.1002/cpt1975185part1547.
Benson HA. Transdermal drug delivery: penetration enhancement techniques. Current drug delivery. 2005;2(1):23-33. doi: https://doi.org/10.2174/1567201052772915.
M. N J, Chandrakala V, Srinivasan S. An overview: recent development in transdermal drug delivery. Int J Pharm Pharm Sci. 2022;14(10):1-9. doi: https://doi.org/10.22159/ijpps.2022v14i10.45471.
Coulman SA, Anstey A, Gateley C, Morrissey A, McLoughlin P, Allender C, et al. Microneedle mediated delivery of nanoparticles into human skin. Int J Pharm. 2009;366(1-2):190-200. doi: https://doi.org/10.1016/j.ijpharm.2008.08.040.
Milewski M, Brogden NK, Stinchcomb AL. Current aspects of formulation efforts and pore lifetime related to microneedle treatment of skin. Expert Opin Drug Deliv. 2010:617-29. doi: https://doi.org/10.1517/17425241003663228.
Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261-8. doi: https://doi.org/10.1038/nbt.1504.
Donnelly RF, Singh TRR, Tunney. Microneedle arrays allow lower microbial penetration than hypodermic needles in-vitro. Pharm Res. 2009:2513-22. doi: https://doi.org/10.1007/s11095-009-9967-2.
Anjani QK, Permana AD, Cárcamo-Martínez Á, Domínguez-Robles J, Tekko IA, Larrañeta E, et al. Versatility of hydrogel-forming microneedles in in vitro transdermal delivery of tuberculosis drugs. Eur J Pharm Biopharm. 2021;158:294-312. doi: https://doi.org/10.1016/j.ejpb.2020.12.003.
Carcamo-Martinez A, Mallon B, Anjani QK, Dominguez-Robles J, Utomo E, Vora LK, et al. Enhancing intradermal delivery of tofacitinib citrate: Comparison between powder-loaded hollow microneedle arrays and dissolving microneedle arrays. Int J Pharm. 2021;593:120152. doi: https://doi.org/10.1016/j.ijpharm.2020.120152.
Quinn HL, Kearney M-C, Courtenay AJ, McCrudden MT, Donnelly RF. The role of microneedles for drug and vaccine delivery. Expert Opin Drug Deliv. 2014;11(11):1769-80. doi: https://doi.org/10.1517/17425247.2014.938635.
Spreen WR, Margolis DA, Pottage Jr JC. Long-acting injectable antiretrovirals for HIV treatment and prevention. Curr Opin HIV AIDS. 2013;8(6):565. doi: https://doi.org/10.1097%2FCOH.0000000000000002.
Manoj VR, Manoj H. Review on transdermal microneedle-based drug delivery. Asian J Pharm Clin Res. 2019;12(1):18-29. doi: https://doi.org/10.22159/ajpcr.2019.v12i1.27434.
Vora LK, Donnelly RF, Larrañeta E, González-Vázquez P, Thakur RRS, Vavia PR. Novel bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted intradermal delivery: Proof of concept. J Control Release. 2017;265:93-101. doi: https://doi.org/10.1016/j.jconrel.2017.10.005.
Vora LK, Moffatt K, Tekko IA, Paredes AJ, Volpe-Zanutto F, Mishra D, et al. Microneedle array systems for long-acting drug delivery. Eur J Pharm Biopharm. 2021;159:44-76. doi: https://doi.org/10.1016/j.ejpb.2020.12.006.
Wu X, Chen Y, Gui S, Wu X, Chen L, Cao Y, et al. Sinomenine hydrochloride-loaded dissolving microneedles enhanced its absorption in rabbits. Pharm Dev Technol. 2016;21(7):787-93. doi: https://doi.org/10.3109/10837450.2015.1055766.
Amodwala S, Kumar P, Thakkar HP. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: A patient friendly approach to manage arthritis. Eur J Pharm Sci. 2017:114-23. doi: https://doi.org/10.1016/j.ejps.2017.04.001.
Shaji J, Shah A. Optimization of tenoxicam loaded niosomes using quadratic design. Int J Curr Pharm. 2016;8(1):62-7.
Kolli CS, Banga AK. Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res. 2008;25(1):104-13. doi: https://doi.org/10.1007/s11095-007-9350-0.
Ferreira PG, Noronha L, Teixeira R, Vieira I, Borba-Santos LP, Viçosa A, et al. Investigation of a microemulsion containing clotrimazole and itraconazole for transdermal delivery for the treatment of sporotrichosis. J Pharm Sci. 2020;109(2):1026-34. doi: https://doi.org/10.1016/j.xphs.2019.10.009.
Klang V, Schwarz JC, Lenobel B, Nadj M, Auböck J, Wolzt M, et al. In vitro vs. in vivo tape stripping: Validation of the porcine ear model and penetration assessment of novel sucrose stearate emulsions. Eur J Pharm Biopharm. 2012;80(3):604-14. doi: https://doi.org/10.1016/j.ejpb.2011.11.009.
Chu LY, Choi S-O, Prausnitz MR. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. J Pharm Sci. 2010;99(10):4228-38. doi: https://doi.org/10.1002/jps.22140.
Patel DP, Setty. Development and evaluation of ethyl cellulose-based transdermal films of furosemide for improved in vitro skin permeation. Aaps Pharmscitech. 2009:437-42. doi: https://doi.org/10.1208/s12249-009-9224-3.
Ferreira SC, Bruns R, Ferreira HS, Matos GD, David J, Brandão G, et al. Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta. 2007:179-86.
Ortiz MC, Herrero A, Sanllorente S, Reguera C. Methodology of multicriteria optimization in chemical analysis: some applications in stripping voltammetry. Talanta. 2005;65(1):246-54. doi: https://doi.org/10.1016/j.talanta.2004.06.031.
Neufeld L, Bianco-Peled H. Designing a biocompatible hydrogel for the delivery of mesalamine. Int J Pharm. 2015:170-9. doi: https://doi.org/10.1016/j.ijpharm.2015.06.026.
Zhu DD, Chen BZ, He MC, Guo XD. Structural optimization of rapidly separating microneedles for efficient drug delivery. J Ind Eng Chem. 2017;51:178-84. doi: https://doi.org/10.1016/j.jiec.2017.02.030.
He J, Zhang Z, Zheng X, Li L, Qi J, Wu W, et al. Design and evaluation of dissolving microneedles for enhanced dermal delivery of propranolol hydrochloride. Pharmaceutics. 2021;13(4). Epub 2021/05/01. doi: https://doi.org/10.3390%2Fpharmaceutics13040579. PubMed PMID: 33921712.
Rojekar S, Vora LK, Tekko IA, Volpe-Zanutto F, McCarthy HO, Vavia PR, et al. Etravirine-loaded dissolving microneedle arrays for long-acting delivery. Eur J Pharm Biopharm. 2021;165:41-51. doi: https://doi.org/10.1016/j.ejpb.2021.04.024.
Zafar N, Mahmood A, Sarfraz RM, Elaissari A. Simvastatin loaded dissolvable microneedle patches with improved pharmacokinetic performance. Micromachines. 2022;13(8):1304. doi: https://doi.org/10.3390/mi13081304.
Akhtar N. Microneedles: An innovative approach to transdermal delivery-a review. Int J Pharm Pharm Sci. 2014;6(4):18-25.
Laniesse D, Smith DA, Knych HK, Mosley C, Guzman DS-M, Beaufrère H. In vitro characterization of a formulation of butorphanol tartrate in a poloxamer 407 base intended for use as a parenterally administered slow-release analgesic agent. J Am Vet Med Assoc. 2017;78(6):677-87. doi: https://doi.org/10.2460/ajvr.78.6.677.
Noguchi J, Hatanaka E, Kurita H, Fudoji R, Michinaka Y, inventors; Google Patents, assignee. Patch US patent no. US 10, 307, 381 B2. 2019.
Sanz MG, Sellon DC, Cary JA, Hines MT, Farnsworth KD. Analgesic effects of butorphanol tartrate and phenylbutazone administered alone and in combination in young horses undergoing routine castration. J Am Vet Med Assoc. 2009;235(10):1194-203.
Svozil M, Doležal P, Hrabálek A, Měrička P. In-vitro studies on transdermal permeation of butorphanol. Drug Dev Ind Pharm. 2007;33(5):559-67. doi: 10.1080/03639040601128639.
Published
How to Cite
Issue
Section
Copyright (c) 2023 AMAN TIWARI, SHUBHAM SHARMA, PRAKASH KUMAR SONI, SURESH KUMAR PASWAN

This work is licensed under a Creative Commons Attribution 4.0 International License.