PREPARATION AND EVALUATION OF ENTRECTINIB PLGA NANOBUBBLES BY CENTRAL COMPOSITE DESIGN

Authors

  • P. NANDINI BirTikandrajit University, Canchipur, Imphal West-795003, Manipur, India
  • D. V. R. N. BHIKSHAPATHI BirTikandrajit University, Canchipur, Imphal West-795003, Manipur, India

DOI:

https://doi.org/10.22159/ijap.2025v17i1.50891

Keywords:

Entrectinib, Cancer, Solvent-diffusion-evaporation technique, Central composite design, Nanobubbles, Entrectinib, solvent-diffusion-evaporation technique, central composite design, nanobubbles, ultrasound-assisted medication, cytotoxicity., cytotoxicity

Abstract

Objective: For targeted delivery of entrectinib, we created nanobubbles with a poly(lactic-co-glycolic acid) (PLGA) shell and a perfluoropentane core.

Methods: Entrectinib was encapsulated in PLGA nanobubbles by a modified W/O/W double emulsion, solvent-diffusion-evaporation technique. Central composite design was utilized to explore how four independent factors like sonication distance (X1), amplitude (X2), time (X3), and power (X4)—affected droplet size (Y1) and polydispersity Index (PDI) (Y2).

Results: The optimal sonication distance, time, amplitude, and power were 2.41 cm; 3.61 min, 44.42%, and 77.35 W. Drug-loaded nanobubbles showed a PDI of 0.196±0.005 and an average particle size of 73.53±3.08 nm, indicating a unimodal system with low PDI high zeta potential indicate formulation stability. The mean drug loading capacity was 29.27±1.54 mg/g. The remarkable drug encapsulation efficiency (82.12±2.98%) supports an inclusion complex. Transmission Electron Microscopy shows drug encapsulation does not change nanobubbles' spherical shape. Fourier-transform infrared spectroscopy and Differential scanning calorimetry revealed nanobubble-drug complex production. Nanobubbles emitted more entrectinib than the solution. Drug release via ultrasound was different. At 6 hours, sonication released 46.08% of entrectinib and 26.42% without. Entrectinib released 99.34% after 24 hours versus 58.93% without ultrasonography. The formulation's consistent size distribution remained stable after 180 days. Parenteral safety and non-toxicity were shown by these nanobubbles at 15 mg/ml. In vitro ultrasonic increases cell uptake. The viability of MCF-7 cells was assessed following exposure to entrectinib at 10 to 120 μM dosages. All entrectinib formulations showed little cytotoxicity, up to 98% cell survival at 10 μM doses.

Conclusion: PLGA nanobubbles can be used in ultrasound-responsive formulations to deliver targeted drugs to fight cancer and other diseases.

Downloads

Download data is not yet available.

References

Frampton JE. Entrectinib: A Review in NTRK+ Solid Tumours and ROS1+ NSCLC. Drugs. 2021 Apr;81:697–708.

Pravallika KE, Prameela RA, Ratna KM. Bioanalytical method development and validation of entrectinib in rat plasma by liquid-chromatography–tandem mass spectrometry. Asian J Pharm Clin Res. 2020 Nov;13(11):155-63.

Palanati M, Bhikshapathi DVRN. Determination of in vitro cytotoxicity of entrectinib and pemigatinib nanosponges tablets on a 498, mcf-7, and panc-1 cell line. Int J Pharm Pharm Sci. 2024 Feb;16(2):12-6.

Rolfo C, Ruiz R, Giovannetti E, Gil-Bazo I, Russo A, Passiglia F, Giallombardo M, Peeters M, Raez L. Entrectinib: a potent new TRK, ROS1, and ALK inhibitor. Expert Opin Investig Drugs. 2015 Nov;24(11):1493-500.

Meneses-Lorente G, Bentley D, Guerini E, Kowalski K, Chow-Maneval E, Yu L, Brink A, Djebli N, Mercier F, Buchheit V, Phipps A. Characterization of the pharmacokinetics of entrectinib and its active M5 metabolite in healthy volunteers and patients with solid tumors. Invest New Drugs. 2021 Jun ;39(3):803-11.

De Braud FG, Niger M, Damian S, Bardazza B, Martinetti A, Pelosi G, Marrapese G, Palmeri L, Cerea G, Valtorta E, Veronese S. Alka-372-001: First-in-human, phase I study of entrectinib–an oral pan-trk, ROS1, and ALK inhibitor–in patients with advanced solid tumors with relevant molecular alterations. J Clin Oncol. 2015 Dec;33(15):1.

Al-Salama ZT, Keam SJ. Entrectinib: First Global Approval. Drugs. 2019 Sep;79(13):1477-83.

Parrott N, Stillhart C, Lindenberg M, Wagner B, Kowalski K, Guerini E, Djebli N, Meneses-Lorente G. Physiologically based absorption Modelling to explore the impact of Food and gastric pH changes on the pharmacokinetics of Entrectinib. AAPS J. 2020 May;22(4):78.

Liu D, Offin M, Harnicar S, Li BT, Drilon A. Entrectinib: an orally available, selective tyrosine kinase inhibitor for the treatment of NTRK, ROS1, and ALK fusion-positive solid tumors. Ther Clin Risk Manag. 2018 Jul;14:1247-52.

Wang Q, Fang P, Zheng L, Ye L. Quantification and pharmacokinetic study of entrectinib in rat plasma using ultra-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 2019 Apr;33(4):e4467.

Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF, Blakely CM, Seto T, Cho BC, Tosi D, Besse B. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumors: integrated analysis of three phase 1–2 trials. The Lancet Oncol. 2020 Feb;21(2):271-82.

Wen H, Jung H, Li X. Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J. 2015 Nov;17:1327-40.

Kumari L, Choudhari Y, Patel P, Gupta GD, Singh D, Rosenholm JM, Bansal KK, Kurmi BD. Advancement in Solubilization Approaches: A Step Towards Bioavailability Enhancement of Poorly Soluble Drugs. Life. 2023 Apr;13(5):1099.

Yu YQ, Yang X, Wu XF, Fan YB. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications. Front bioeng biotechnol. 2021 Mar;9:646554.

Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez-Torres MD, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S. Nano-based drug delivery systems: recent developments and future prospects. J nanobiotechnol. 2018 Jan;16(1):1-33.

Selvamuthukumar S, Anandam S, Krishnamoorthy K, Rajappan M. Nanosponges: A novel class of drug delivery system-review. J Pharm Pharm Sci. 2012 Jan;15(1):103-11.

Foroughi-Nia B, Barar J, Memar MY, Aghanejad A, Davaran S. Progresses in polymeric nanoparticles for delivery of tyrosine kinase inhibitors. Life Sci. 2021 Aug;278:119642.

Jin J, Yang L, Chen F, Gu N. Drug delivery system based on nanobubbles. Interdisci Mat. 2022 Apr;1(4):471-94.

Pasupathy R, Pandian P, Selvamuthukumar S. Nanobubbles: A Novel Targeted Drug Delivery System. Brazilian J Pharm Sci. 2022 Dec;58.

Ponnaganti M, Ancha KB, Palanati M. Formulation and optimization of ceritinib loaded nanobubbles by box-behnken design. Int J App Pharm. 2022 Apr;14(4):219-26.

Jin J, Yang L, Chen F, Gu N. Drug delivery system based on nanobubbles. Interdisci Mat. 2022 Apr;1(4):471-94.

Gao J, Liu J, Meng Z, Li Y, Hong Y, Wang L, He L, Hu B, Zheng Y, Li T, Cui D. Ultrasound-assisted C3F8-filled PLGA nanobubbles for enhanced FGF21 delivery and improved prophylactic treatment of diabetic cardiomyopathy. Acta Biomat. 2021 Aug;130:395-408.

Jayita D, Anima D, Lalhlenmawia H. Formulation and in vitro evaluation of poly-(d, l -lactide-co-glycolide) (PLGA) nanoparticles of ellagic acid and its effect on human breast cancer, mcf-7 cell line. Int J Curr Pharm Res. 2021 May;13(5):56-62.

Su C, Ren X, Nie F, Li T, Lv W, Li H, Zhang Y. Current advances in ultrasound-combined nanobubbles for cancer-targeted therapy: a review of the current status and future perspectives. RSC Adv. 2021 Apr;11(21):12915-28.

Hema AN, Gaayathri G, Gundeti S. Development of orodispersible tablets of loratadine containing an amorphous solid dispersion of the drug in soluplus® using design of experiments. Int J Pharm Pharm Sci. 2023 Aug;15(8):19-27.

Rampado R, Peer D. Design of experiments in the optimization of nanoparticle-based drug delivery systems. J Control Release. 2023 Jun;358:398-419.

Iqbal M, Zafar N, Fessi H, Elaissari A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int J pharm. 2015 Feb;496(2):173-90.

Candioti LV, De Zan MM, Cámara MS, Goicoechea HC. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta. 2014 Jun;124:123-38.

Kumar V, Bhalla A, Rathore AS. Design of experiments applications in bioprocessing: concepts and approach. Biotech progress. 2014 Jan;30(1):86-99.

Paterakis NG, Gibescu M, Bakirtzis AG, Catalao JP. A multi-objective optimization approach to risk-constrained energy and reserve procurement using demand response. IEEE Transactions Power Sys. 2017 Apr;33(4):3940-54.

Zhang X, Zheng Y, Wang Z, Huang S, Chen Y, Jiang W, Zhang H, Ding M, Li Q, Xiao X, Luo X. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials. 2014 Jun;35(19):5148-61.

Yedgar S, Barshtein G, Gural A. Hemolytic Activity of Nanoparticles as a Marker of Their Hemocompatibility. Micromachines. 2022 Dec;13(12):2091.

Wang S, Liu X, Chen S, Liu Z, Zhang X, Liang XJ, Li L. Regulation of Ca2+ signaling for drug-resistant breast cancer therapy with mesoporous silica nanocapsule encapsulated doxorubicin/siRNA cocktail. ACS Nano. 2018 Jan;13(1):274-83.

Zhang X, Zheng Y, Wang Z, Huang S, Chen Y, Jiang W, Zhang H, Ding M, Li Q, Xiao X, Luo X. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials. 2014 Jun;35(19):5148-61.

Xu JS, Huang J, Qin R, Hinkle GH, Povoski SP, Martin EW, Xu RX. Synthesizing and binding dual-mode poly (lactic-co-glycolic acid)(PLGA) nanobubbles for cancer targeting and imaging. Biomaterials. 2010 Jul;31(7):1716-22.

Yan Y, Chen Y, Liu Z, Cai F, Niu W, Song L, Liang H, Su Z, Yu B, Yan F. Brain delivery of curcumin through low-intensity ultrasound-induced blood–brain barrier opening via lipid-PLGA nanobubbles. Int J Nanomed. 2021 Nov:7433-47.

Brzezińska R, Wirkowska-Wojdyła M, Piasecka I, Górska A. Application of Response Surface Methodology to Optimize the Extraction Process of Bioactive Compounds Obtained from Coffee Silverskin. Appl Sci. 2023 Apr;13(9):5388.

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018 May;10(2):57.

Published

27-11-2024

How to Cite

NANDINI, P., & BHIKSHAPATHI, D. V. R. N. (2024). PREPARATION AND EVALUATION OF ENTRECTINIB PLGA NANOBUBBLES BY CENTRAL COMPOSITE DESIGN. International Journal of Applied Pharmaceutics, 17(1). https://doi.org/10.22159/ijap.2025v17i1.50891

Issue

Section

Original Article(s)