FORMULATION AND EVALUATION OF ECONAZOLE NITRATE NANOEMULSION FOR TOPICAL OCULAR ADMINISTRATION

Authors

  • NANDHA KUMAR J. Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India https://orcid.org/0009-0009-9378-9488
  • ANASUYA PATIL Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India https://orcid.org/0000-0001-6096-6278
  • HEMANTH G. Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India

DOI:

https://doi.org/10.22159/ijap.2025v17i1.51756

Keywords:

Econazole nitrate, Nanoemulsion, Anti-fungal activity, Ocular drug delivery, Drug release

Abstract

Objective: The study aimed to use cold homogenization to create an Econazole Nitrate (ECN) nano-emulsion formulation.

Methods: Different ratios of surfactants (polypropylene 188 and Tween 80) and co-surfactants (ethanol) were used to create eight formulations. Out of them, compositions ECN1, ECN4, ECN5, and ECN7 were chosen due to initial research demonstrating encouraging outcomes. Dissolution studies evaluated droplet size, shape, drug content, and in vitro drug release characteristics. A comparative analysis was conducted to assess the improvement in medication release rates compared to pure drug formulations.

Results: ECN5, which attained an 89.43% drug release rate after 360 min, demonstrated the greatest medication release rate among the chosen formulations (ECN1, ECN4, ECN5, and ECN7). The improved formulations showed consistent spherical forms with droplet diameters ranging from 114 nm to 214.87 nm. Based on these findings, it appears that the nano-emulsion formulation successfully raises econazole nitrate's solubility, which is important because of its poor solubility in ocular administration applications.

Conclusion: The study used cold homogenization to effectively generate and optimize ECN nano-emulsion formulations. The most promising features of formulation ECN5, such as consistent droplet size distribution and dramatically improved drug release rates, were displayed. These results demonstrate the potential of nano-emulsions to enhance econazole nitrate's solubility and delivery effectiveness, especially for ocular applications.

Downloads

Download data is not yet available.

References

Taborda CP, Uran ME, Nosanchuk JD, Travassos LR. Paracoccidioidomycosis: challenges in the development of a vaccine against an endemic mycosis in the Americas. Rev Inst Med Trop Sao Paulo. 2015;57 Suppl 19:21-4. doi: 10.1590/S0036-46652015000700005, PMID 26465365.

Hurtgen BJ, Hung CY, Ostroff GR, Levitz SM, Cole GT. Construction and evaluation of a novel recombinant T cell epitope based vaccine against coccidioidomycosis. Infect Immun. 2012;80(11):3960-74. doi: 10.1128/IAI.00566-12, PMID 22949556.

Medici NP, Del Poeta MD. New insights on the development of fungal vaccines: from immunity to recent challenges. Mem Inst Oswaldo Cruz. 2015;110(8):966-73. doi: 10.1590/0074-02760150335, PMID 26602871.

Wang Y, Wang C. Novel eye drop delivery systems: advance on formulation design strategies targeting anterior and posterior segments of the eye. Pharmaceutics. 2022;14(6):1150. doi: 10.3390/pharmaceutics14061150.

Nanjawade BK, Manvi FV, Manjappa AS. In situ forming hydrogels for sustained ophthalmic drug delivery. J Control Release. 2007;122(2):119-34. doi: 10.1016/j.jconrel.2007.07.009, PMID 17719120.

Modi D, Mohammad, Warsi MH, Garg V, Bhatia M, Kesharwani P. Formulation development optimization and in vitro assessment of thermoresponsive ophthalmic pluronic F127 chitosan in situ tacrolimus gel. J Biomater Sci Polym Ed. 2021;32(13):1678-702. doi: 10.1080/09205063.2021.1932359, PMID 34013840.

Shakeel F, Baboota S, Ahuja A, Ali J, Faisal MS, Shafiq S. Stability evaluation of celecoxib nanoemulsion containing tween 80. Thai J Pharm Sci. 2008;32(1):4-9. doi: 10.56808/3027-7922.2194.

Patel MR, Patel MH, Patel RB. Preparation and in vitro/ex vivo evaluation of nanoemulsion for transnasal delivery of paliperidone. Appl Nanosci. 2016;6(8):1095-104. doi: 10.1007/s13204-016-0527-x.

Shakeel F, Ramadan W. Transdermal delivery of anticancer drug caffeine from water in oil nanoemulsions. Colloids Surf B Biointerfaces. 2010;75(1):356-62. doi: 10.1016/j.colsurfb.2009.09.010, PMID 19783127.

Thomas L, Zakir F, Mirza MA, Anwer MK, Ahmad FJ, Iqbal Z. Development of curcumin loaded chitosan polymer based nanoemulsion gel: in vitro ex vivo evaluation and in vivo wound healing studies. Int J Biol Macromol. 2017 Aug;101:569-79. doi: 10.1016/j.ijbiomac.2017.03.066, PMID 28322948.

Tarik Alhamdany A, Saeed AM, Alaayedi M. Nanoemulsion and solid nanoemulsion for improving oral delivery of a breast cancer drug: formulation evaluation and a comparison study. Saudi Pharm J. 2021;29(11):1278-88. doi: 10.1016/j.jsps.2021.09.016, PMID 34819790.

Ali HH, Hussein AA. Oral nanoemulsions of candesartan cilexetil: formulation characterization and in vitro drug release studies. AAPS Open. 2017;3:3-16. doi: 10.1016/j.ijpharm.2013.10.044.

Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A. Formulation development and optimization using nanoemulsion technique: a technical note. AAPS Pharm Sci Tech. 2007 Apr 6;8(2):28. doi: 10.1208/pt0802028, PMID 17622106.

Mehrandish S, Mirzaeei S. A review on ocular novel drug delivery systems of antifungal drugs: functional evaluation and comparison of conventional and novel dosage forms. Adv Pharm Bull. 2021;11(1):28-38. doi: 10.34172/apb.2021.003, PMID 33747850.

Kommuru TR, Gurley B, Khan MA, Reddy IK. Self emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm. 2001;212(2):233-46. doi: 10.1016/s0378-5173(00)00614-1, PMID 11165081.

Lawrence MJ. Surfactant systems (SEDDS): microemulsions and vehicles as vehicles for drug delivery. Eur J Drug Metab Pharmacokinet. 1994;19(3):2257-69. doi: 10.1016/j.jddst.2021.103047.

Kalam MA, Alshamsan A, Aljuffali IA, Mishra AK, Sultana Y. Delivery of gatifloxacin using microemulsion as vehicle: formulation evaluation transcorneal permeation and aqueous humor drug determination. Drug Deliv. 2016;23(3):896-907. doi: 10.3109/10717544.2014.920432, PMID 24865289.

Dludla SB, Mashabela LT, Ng’andwe B, Makoni PA, Witika BA. Current Advances in Nano-Based and Polymeric Stimuli-Responsive Drug Delivery Targeting the Ocular Microenvironment: a review and envisaged future perspectives. Polymers (Basel). 2022;14(17)3580. doi: 10.3390/polym14173580, PMID 36080651.

Khani S, Keyhanfar F, Amani A. Design and evaluation of oral nanoemulsion drug delivery system of mebudipine. Drug Deliv. 2016;23(6):2035-43. doi: 10.3109/10717544.2015.1088597, PMID 26406153.

Klang V, Matsko NB, Valenta C, Hofer F. Electron microscopy of nanoemulsions: an essential tool for characterisation and stability assessment. Micron. 2012;43(2-3):85-103. doi: 10.1016/j.micron.2011.07.014, PMID 21839644.

Anton N, Vandamme TF. Nanoemulsions and micro emulsions: clarifications of the critical differences. Pharm Res. 2011;28(5):978-85. doi: 10.1007/s11095-010-0309-1, PMID 21057856.

Vitorino C, Carvalho FA, Almeida AJ, Sousa JJ, Pais AA. The size of solid lipid nanoparticles: an interpretation from experimental design. Colloids Surf B Biointerfaces. 2011;84(1):117-30. doi: 10.1016/j.colsurfb.2010.12.024, PMID 21242064.

Rachmawati H, Budiputra DK, Mauludin R. Curcumin nanoemulsion for transdermal application: formulation and evaluation. Drug Dev Ind Pharm. 2015;41(4):560-6. doi: 10.3109/03639045.2014.884127, PMID 24502271.

Qian C, Mc Clements DJ. Formation of nanoemulsions stabilized by model food grade emulsifiers using high pressure homogenization: factors affecting particle size. Food Hydrocoll. 2011;25(5):1000-8. doi: 10.1016/j.foodhyd.2010.09.017.

Joseph D, K. Study on drug releasing behavior of different biopolymers. Indian Res J Pharm Sci. 2020;7(2):2227-50. doi: 10.21276/irjps.2020.7.2.15.

Sugumar S, Singh S, Mukherjee A, Chandrasekaran N. Nanoemulsion of orange oil with non ionic surfactant produced emulsion using ultrasonication technique: evaluating against food spoilage yeast. Appl Nanosci. 2016;6(1):113-20. doi: 10.1007/s13204-015-0412-z.

Alam T, Pandit J, Vohora D, Aqil M, Ali A, Sultana Y. Optimization of nanostructured lipid carriers of lamotrigine for brain delivery: in vitro characterization and in vivo efficacy in epilepsy. Expert Opin Drug Deliv. 2015;12(2):181-94. doi: 10.1517/17425247.2014.945416, PMID 25164097.

Sukre M, Barge V, Kasabe A, Shinde T, Kandge M. Formulation and evaluation of econazole nitrate microemulsion. Int J Health Sci. 2022;6(S3):9181-90. doi: 10.53730/ijhs.v6nS3.8243.

Kumar S, Patil A, Nile NP, Varma AK, Sahu D, Vishwakarma DK. Formulation and characterization of miconazole nanoemulgel for topical delivery by using natural oils. J Cardiovasc Dis Res. 2023;14(8):2166-82. doi: 10.1016/j.colsurfb.2013.07.043.

Musa SH, Basri M, Masoumi HR, Karjiban RA, Malek EA, Basri H. Formulation optimization of palm kernel oil esters nanoemulsion loaded with chloramphenicol suitable for meningitis treatment. Colloids Surf B Biointerfaces. 2013 Dec 1;112:113-19. doi: 10.1016/j.colsurfb.2013.07.043, PMID 23974000.

Alam T, Pandit J, Vohora D, Aqil M, Ali A, Sultana Y. Optimization of nanostructured lipid carriers of lamotrigine for brain delivery: in vitro characterization and in vivo efficacy in epilepsy. Expert Opin Drug Deliv. 2015;12(2):181-94. doi: 10.1517/17425247.2014.945416, PMID 25164097.

Published

07-01-2025

How to Cite

KUMAR J., N., PATIL, A., & G., H. (2025). FORMULATION AND EVALUATION OF ECONAZOLE NITRATE NANOEMULSION FOR TOPICAL OCULAR ADMINISTRATION. International Journal of Applied Pharmaceutics, 17(1), 334–343. https://doi.org/10.22159/ijap.2025v17i1.51756

Issue

Section

Original Article(s)