DESIGN AND CHARACTERIZATION OF GLIBENCLAMIDE-CAFFEIC ACID COCRYSTALS VIA CRYSTAL ENGINEERING

Authors

  • JYOTI MALIK Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak (Haryana), India. School of Pharmaceutical Sciences, Apeejay Stya University, Sohna Gurugram, (Haryana), India https://orcid.org/0000-0003-0348-6133
  • HIMANSHU SACHDEVA Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak (Haryana), India https://orcid.org/0009-0003-9341-0200
  • ANURAG KHATKAR Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak (Haryana), India
  • ARUN NANDA Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak (Haryana), India

DOI:

https://doi.org/10.22159/ijap.2025v17i1.51992

Keywords:

Cocrystals, Glibenclamide, Caffeic acid, Solubility, Co-former, Solvent evaporation method

Abstract

Objective: The present work aims to prepare and characterize glibenclamide cocrystals.

Methods: Glibenclamide was chosen as a model drug due to its low solubility and classification as a Biopharmaceutical Classification System (BCS) class II drug. Among the various methods for selecting appropriate coformers, the pKa and thermal methods were employed. Using these approaches, a formulation with caffeic acid, prepared through the solvent evaporation method, demonstrated the best results as evaluated by parameters such as dissolution rate, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Hot Stage Microscopy (HSM), Scanning Electron Microscopy (SEM).

Results: In the FTIR spectra, the sulfonamide group of the drug formed hydrogen bonds with the hydroxyl groups of the coformer, suggesting the presence of hydrogen bonding interactions between the components. HSM and DSC revealed that the melting point of the cocrystals occurred at a different temperature for the pure drug and coformer. This significant change in the melting point indicates the formation of a new crystalline phase in the cocrystals, suggesting that the drug and coformer interact at the molecular level to form a unique solid structure. XRD analysis showed diffraction peaks at distinct points with higher intensity in the cocrystals, indicating a new crystalline structure. SEM images of the cocrystals revealed a well-defined crystalline morphology, which differed from the irregular shapes of the pure drug and coformer. The cocrystals demonstrated a significantly improved dissolution rate compared to the pure drug and marketed formulation. In animal studies conducted on male Wistar rats, cocrystals reduced blood glucose levels more rapidly than pure glibenclamide. This enhanced antidiabetic efficacy suggests that the cocrystal formulation not only improves dissolution but also accelerates the therapeutic onset of action.

Conclusion: These findings confirmed that the glibenclamide cocrystals prepared with caffeic acid help effectively improve the drug’s low solubility.

Downloads

Download data is not yet available.

References

Panzade P, Shendarkar G, Shaikh S, Balmukund Rathi PB. Pharmaceutical cocrystal of piroxicam: design formulation and evaluation. Adv Pharm Bull. 2017;7(3):399-408. doi: 10.15171/apb.2017.048, PMID 29071222.

Nanda A. Co-crystals of ezetimibe: design formulation and evaluation. JMPAS. 2022;11(4):5172-83. doi: 10.55522/jmpas.V11I4.4016.

Nicolov M, Ghiulai RM, Voicu M, Mioc M, Duse AO, Roman R. Cocrystal formation of betulinic acid and ascorbic acid: synthesis physico-chemical assessment antioxidant and antiproliferative activity. Front Chem. 2019;7:92. doi: 10.3389/fchem.2019.00092, PMID 30847340.

Budiman A, Megantara S, Saraswati P. Synthesize glibenclamide ascorbic acid cocrystal using solvent evaporation method to increase solubility and dissolution rate of glibenclamide. Res J Pharm Technol. 2019;12(12):5805-10. doi: 10.5958/0974-360X.2019.01005.9.

Koranne S, Krzyzaniak JF, Luthra S, Arora KK, Suryanarayanan R. Role of coformer and excipient properties on the solid-state stability of theophylline cocrystals. Cryst Growth Des. 2019;19(2):868-75. doi: 10.1021/acs.cgd.8b01430.

Singh M, Barua H, Jyothi VG, Dhondale MR, Nambiar AG, Agrawal AK. Cocrystals by design: a rational coformer selection approach for tackling the API problems. Pharmaceutics. 2023;15(4):1161. doi: 10.3390/pharmaceutics15041161, PMID 37111646.

Raghavendra HL, Kumar GP. Development and evaluation of polymer-bound glibenclamide oral thin film. J Bioequivalence Bioavailab. 2017;9(1):324-30.

Budiman A, Megantara S, Apriliani A. Solid dosage form development of glibenclamide aspartame cocrystal using the solvent evaporation method to increase the solubility of glibenclamide. Int J App Pharm. 2019;11(3):150-4. doi: 10.22159/ijap.2019v11i3.32121.

Budiman A, Nurlatifah E, Amin S. Enhancement of solubility and dissolution rate of glibenclamide by cocrystal approach with solvent drop grinding method. Int J Curr Pharm Rev Res. 2016;7(5):248-50.

Kumar R, Singh A, Salwan R, Bhanot R, Rahar S, Dhawan RK. An informative review on solid dispersion. GSC Biol Pharm Sci. 2023;22(1):114-21. doi: 10.30574/gscbps.2023.22.1.0498.

Joudeh N, Linke D. Nanoparticle classification physiocochemical properties characterization and applications: a comprehensive review for biologists. J Nanobiotechnol. 2022;20(262):1-29.

Nemade SM, Kakad SP, Kshirsagar SJ, Padole TR. Development of nanoemulsion of antiviral drug for brain targeting in the treatment of neuro AIDS. Beni Suef Univ J Basic Appl Sci. 2022;11(1):1-10. doi: 10.1186/s43088-022-00319-8.

Eesam S, Bhandaru JS, Akkinepally RR, Bobbala RK. Cocrystallization of gliclazide with improved physicochemical properties. Futur J Pharm Sci. 2021;7(1):1-13. doi: 10.1186/s43094-021-00261-z.

Batisai E. Solubility enhancement of antidiabetic drugs using a co-crystallization approach. Chemistry Open. 2021;10(12):1260-8. doi: 10.1002/open.202100246, PMID 34921592.

Budiman A, Husni P, Shafira ATQ, Alfauziah TQ. The development of glibenclamide saccharin cocrystal tablet formulations to increase the dissolution rate of the drug. Int J App Pharm. 2019;11(4):359-64. doi: 10.22159/ijap.2019v11i4.33802.

Budiman A, Megantara S, Raraswati P, Qoriah TA. Solid dosage form development of glibenclamide with increasing the solubility and dissolution rate using co-crystallization. Int J App Pharm. 2018;10(6):181-6. doi: 10.22159/ijap.2018v10i6.29257.

Silva Filho SF, Pereira AC, Sarraguca JM, Sarraguca MC, Lopes J, Facanha Filho PF. Synthesis of a glibenclamide cocrystal: full spectroscopic and thermal characterization. J Pharm Sci. 2018;107(6):1597-604. doi: 10.1016/j.xphs.2018.01.029, PMID 29432762.

Budiman A, Megantara S, Saraswati P. Synthesize glibenclamide ascorbic acid cocrystal using solvent evaporation method to increase solubility and dissolution rate of glibenclamide. Res J Pharm Technol. 2019;12(12):5805-10. doi: 10.5958/0974-360X.2019.01005.9.

Ambekar AW, Chavan R, Sabale AS. Development and evaluation of nicotinamide and saccharin glibenclamide cocrystal mouth dissolving tablet. J Emerg Technol Innov Res. 2021;8(2):456-64.

Budiman A, Apriliani A, Qoriah TQ, Megantara S. Glibenclamide nicotinamide cocrystals synthesized by the solvent evaporation method to enhance solubility and dissolution rate of glibenclamide. Int J Drug Deliv Technol. 2019;9(1):21-6. doi: 10.25258/ijddt.9.1.4.

Budiman A, Megantara S, Apriliani A. Virtual screening of coformers and solubility test for glibenclamide cocrystallization. Natl J Physiol Pharm Pharmacol. 2017;8(1):124-9. doi: 10.5455/njppp.2017.7.0833229092017.

Srivastava D, Fatima Z, Kaur CD, Mishra A, Nashik SS, Rizvi DA. Glibenclamide-malonic acid cocrystal with enhanced solubility and bioavailability. Drug Dev Ind Pharm. 2022;48(8):417-24. doi: 10.1080/03639045.2022.2122987, PMID 36073946.

Saraf GJ, Burade KK, Gonjari ID, Hosmani AH, Pawar AA. Review on advances in pharmaceutical cocrystal preparation routes intellectual property perspective and regulatory aspects. Int J Curr Pharm Res. 2022;14(5):4-12. doi: 10.22159/ijcpr.2022v14i5.2038.

Winantari AN, Setyawan D, Siswodihardjo S, Soewandhi SN. Cocrystallization acyclovir succinic acid using solvent evaporation methods. Asian J Pharm Clin Res. 2017;10(6):91-4. doi: 10.22159/ajpcr.2017.v10i6.16369.

Rahman F, Winantari AN, Setyawan D, Siswandono. Comparison study of grinding and slurry method on physicochemical characterstic of acyclovir succinic acid cocrystal. Asian J Pharm Clin Res. 2017;10(3):153-8. doi: 10.22159/ajpcr.2017.v10i3.15925.

Kumar A, Singh P, Nanda A. Hot stage microscopy and its applications in pharmaceutical characterization. Appl Microsc. 2020;50(1):12. doi: 10.1186/s42649-020-00032-9, PMID 33580349.

Kumar DS, Chavda N. Spectrophotometric first order derivative method for simultaneous determination of rosuvastatin and fimsartan in synthetic mixture. Int J Pharm Pharm Sci. 2024;6(2):27-31. doi: 10.33545/26647222.2024.v6.i2a.121.

Zafar M, Naeem-ul-Hassan Naqvi SN, Ahmed M, Kaimkhani ZA. Altered kidney morphology and enzymes in streptozotocin induced diabetic rats. Int J Morphol. 2009;27(3):783-90. doi: 10.4067/S0717-95022009000300024.

Reddy MN, Anusha P. Development and characterization of gliclazide cocrystals. Int J Pharm Biol Sci. 2018;8(1):22-32.

Malik J, Khatkar A, Nanda A. A comprehensive insight on pharmaceutical co-crystals for improvement of aqueous solubility. Curr Drug Targets. 2023;24(2):157-70. doi: 10.2174/1389450124666221114095400, PMID 36380409.

Zhang H, Zeng H, LI M, Song Y, Tian S, Xiong J. Novel ascorbic acid co-crystal formulations for improved stability. Molecules. 2022;27(22):1-13. doi: 10.3390/molecules27227998, PMID 36432100.

Raghavendra HL, Kumar PG. Development and evaluation of polymer bound glibenclamide oral film. J Bioequiv Availab. 2017;9(1):324-30.

Sanphui P, Rajput L. Tuning solubility and stability of hydrochlorothiazide co-crystals. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2014;70(1):81-90. doi: 10.1107/S2052520613026917, PMID 24441131.

DU Y, Cai Q, Xue J, Zhang Q. Raman and terahertz spectroscopic investigation of cocrystal formation involving antibiotic nitrofurantoin drug and coformer 4-aminobenzoic acid. Crystals. 2016;6(12):164. doi: 10.3390/cryst6120164.

Kadhim ZJ, Rajab NA. Formulation and characterization of glibenclamide nanoparticles as an oral film. Int J Drug Deliv Technol. 2022;12(1):387-94.

Verma S, Nanda A, Basu SP. Screening preparation and characterization of aceclofenac cocrystals. Drug Inven Today. 2018;11(1):81-7.

Moradiya HG, Islam MT, Halsey S, Maniruzzaman M, Chowdhry BZ, Snowden MJ. Continuous cocrystallisation of carbamazepine and trans cinnamic acid via melt extrusion processing. Cryst Eng Comm. 2014;16(17):3573-83. doi: 10.1039/C3CE42457J.

Xie F, JI S, Cheng Z. In vitro dissolution similarity factor (f2) and in vivo bioequivalence criteria how and when do they match? Using a BCS class II drug as a simulation example. Eur J Pharm Sci. 2015;66:163-72. doi: 10.1016/j.ejps.2014.10.002, PMID 25315411.

Goyal P, Rani D, Chadha R. Crystal engineering: a remedy to tailor the biopharmaceutical aspects of glibenclamide. Cryst Growth Des. 2018;18(1):105-18. doi: 10.1021/acs.cgd.7b00933.

Published

07-01-2025

How to Cite

MALIK, J., SACHDEVA, H., KHATKAR, A., & NANDA, A. (2025). DESIGN AND CHARACTERIZATION OF GLIBENCLAMIDE-CAFFEIC ACID COCRYSTALS VIA CRYSTAL ENGINEERING. International Journal of Applied Pharmaceutics, 17(1), 365–379. https://doi.org/10.22159/ijap.2025v17i1.51992

Issue

Section

Original Article(s)