BOX-BEHNKEN OPTIMIZATION OF MELOXICAM MICROCAPSULE SCAFFOLDS FOR PRECISION DRUG DELIVERY IN ARTHRITIS: ENHANCED STABILITY, EFFECTIVE STERILIZATION, AND IN VIVO THERAPEUTIC POTENTIAL

Authors

  • SAMPATH KUMAR Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India https://orcid.org/0000-0001-5960-3912
  • MOTHILAL MOHAN Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India https://orcid.org/0000-0003-0451-2890

DOI:

https://doi.org/10.22159/ijap.2025v17i1.52160

Keywords:

Entrapment, Implants, Microspheres, Meloxicam, Expulsion, Scaffolds

Abstract

Objective: This study aims to develop and evaluate an innovative implantable drug delivery system using gelatin microspheres loaded with Nonsteroidal Anti-Inflammatory Drugs (NSAIDs), namely meloxicam (MXM), integrated into a gelatin scaffold. This system is designed to enhance drug delivery efficiency and sustain drug release.

Methods: MXM-loaded microspheres with a 1:1 ratio of Poly Lactic Acid (PLA) and Poly Lacto Glycolic Acid (PLGA) were optimized for size, yield, efficiency, and release. Gelatin scaffolds were designed as rod-shaped implants, tested for stability and degradation in pH 7.4 and pH 4.0 buffers at 37 °C for 100 d, and sterilized with γ-radiation. Implants were evaluated in rabbits, with blood samples analyzed via High-Performance Liquid Chromatography (HPLC) for pharmacokinetic parameters statistically analyzed (P<0.05).

Results: The microspheres with a 1:1 ratio of PLA and PLGA demonstrated favorable characteristics such as smaller particle sizes, high yield, and efficient drug entrapment and release. Optimization using Design Expert resulted in highly desirable scaffolds, evidenced by a desirability factor close to one across all assessed variables. The scaffolds exhibited robust physicochemical properties, including sustained drug release over an extended period, highlighting their potential for diverse biomedical applications. Implants showed greater stability in pH 7.4 buffer solutions in contrast to pH 4.0 over 100 d, with higher mass loss in acidic environments (14.4% vs. 9.66%). γ-Radiation sterilization effectively prevented microbial contamination. In vivo studies confirmed MXM detection in plasma, with Scaffold-MXM microspheres (iS-MMS-17) (optimized implantable scaffold) showing higher mean Cmax values and significant Area Under Curve (AUC) parameters, suggesting its potential for effective therapy.

Conclusion: The study found that the scaffolds exhibited strong physicochemical properties and sustained drug release, making them suitable for biomedical use. Implants were more stable at pH 7.4 than at pH 4.0, and γ-radiation effectively prevented microbial contamination. In vivo studies confirmed MXM detection, with iS-MMS-17 showing promising pharmacokinetic parameters for pain and arthritis therapy.

Downloads

Download data is not yet available.

References

Long T, Tan W, Tian X, Tang Z, HU K, GE L. Gelatin/alginate-based microspheres with sphere in capsule structure for spatiotemporal manipulative drug release in gastrointestinal tract. Int J Biol Macromol. 2023 Jan 31;226:485-95. doi: 10.1016/j.ijbiomac.2022.12.040, PMID 36521695.

LI J, Shi H, GU S, Liu F, Han EH. A smart anticorrosive coating based on pH-sensitive microspheres fabricated via a facile method for protection of AA2024-T3. Prog Org Coat. 2024 Apr;189:108259. doi: 10.1016/j.porgcoat.2024.108259.

Qingyun F, Zhenzhao G, Dongyin B, KE H, Ziyu S, Weihong J. Multi drug delivery and osteogenic performance of β-tricalcium phosphate/alginate composite microspheres. Int J Polym Mater Polym Biomater. 2024;73(13):1126-35. doi: 10.1080/00914037.2023.2250049.

Liu Y, Shi J, Guo Y, Xue Z, Han K, Liu S. Regulating hollow structure of CL-20 microspheres using microjet droplet technology to enhance safety and combustion performance. Fuel. 2024 Apr 1;361:130748. doi: 10.1016/j.fuel.2023.130748.

Karnam S, Donthi MR, Jindal AB, Paul AT. Recent innovations in topical delivery for management of rheumatoid arthritis: a focus on combination drug delivery. Drug Discov Today. 2024;29(8):104071. doi: 10.1016/j.drudis.2024.104071, PMID 38942070.

Arshad R, Hassan D, Sani A, Mustafa G, Rahdar A, Fathi karkan S. Nano-engineered solutions for ibuprofen therapy: unveiling advanced co-delivery strategies and nanoparticle systems. J Drug Deliv Sci Technol. 2024;98:105815. doi: 10.1016/j.jddst.2024.105815.

Zid L, Zelenak V, Almasi M, Zelenakova A, Szucsova J, Bednarcik J. Mesoporous silica as a drug delivery system for naproxen: influence of surface functionalization. Molecules. 2020;25(20):4722. doi: 10.3390/molecules25204722, PMID 33076274.

Jang JH, Jeong SH, Lee YB. Dosage exploration of meloxicam according to CYP2C9 genetic polymorphisms based on a population pharmacokinetic-pharmacodynamic model. Pharmacotherapy. 2023;43(2):145-57. doi: 10.1002/phar.2762, PMID 36601711.

Yang Z, Liu L, Sheng L, Wang H, LI C, Lin X. Design of an injectable sustained release in situ forming depot of meloxicam for pain relief. J Drug Deliv Sci Technol. 2024;93:105460. doi: 10.1016/j.jddst.2024.105460.

Gungor H, Corum O, Durna Corum D, Kumru AS, Yilmaz G, Coskun D. Pharmacokinetics of meloxicam following intravenous administration at different doses in sheep. J Vet Pharmacol Ther. 2024;47(3):202-7. doi: 10.1111/jvp.13422, PMID 38033195.

Sharma G, Sharma P, Alam MA. Scaffold-based microsphere in drug delivery system. Int J Nanomater Nanotechnol Nanomed. 2023;10:16-22.

Han N, Fang H, Niu R. Nanosphere and microsphere-based drug delivery systems for wound healing applications: a review. Sci Adv Mater. 2023;15(4):441-56. doi: 10.1166/sam.2023.4446.

Luo X, Zhang L, Luo Y, Cai Z, Zeng H, Wang T. Charge-driven self-assembled microspheres hydrogel scaffolds for combined drug delivery and photothermal therapy of diabetic wounds. Adv Funct Materials. 2023;33(26):2214036. doi: 10.1002/adfm.202214036.

Ruan L, SU M, Qin X, Ruan Q, Lang W, WU M. Progress in the application of sustained release drug microspheres in tissue engineering. Materials Today Bio 2022 Aug 13;16:100394. doi: 10.1016/j.mtbio.2022.100394.

Song W, Tong T, XU J, WU N, Ren L, LI M. Preparation and application of green chitosan/ploy (vinyl alcohol) porous microspheres for the removal of hexavalent chromium. Mater Sci Eng B. 2022 Oct;284:115922. doi: 10.1016/j.mseb.2022.115922.

Mundarinti SH, Ahad HA. Impact of pistacia lentiscus plant gum on particle size and swelling index in central composite designed amoxycillin trihydrate mucoadhesive microspheres. Ind J Pharm Edu Res. 2023;57(3):763-72. doi: 10.5530/ijper.57.3.93.

Babu GN, Muthukaruppan M, Ahad HA. Impact of azadirachta indica fruit mucilage on particle size and swelling index in central composite designed acyclovir mucoadhesive microspheres. Baghdad Sci J. 2023;20(2):425. doi: 10.21123/bsj.2022.6786.

Harsha SS, Ahad HA, Haranath C, Dasari RR, Gowthami M, Varam NJ. Exfoliation technique of composing and depictions of clopidogrel bisulphate afloat microspheres. J Evol Med Dent Sci. 2020;9(14):1156-60. doi: 10.14260/jemds/2020/251.

Singh S, Devi A, Sharma S, Sabharwal S, Sharma S, Dhiman S. A review on microspheres and its role in different drug delivery system as a novel approach. Int J Pharm Sci. 2024;2(6):1112-26.

LI Z, Feng X, Luo S, Ding Y, Zhang Z, Shang Y. High drug loading hydrophobic cross-linked dextran microspheres as novel drug delivery systems for the treatment of osteoarthritis. Asian J Pharm Sci. 2023;18(4):100830. doi: 10.1016/j.ajps.2023.100830, PMID 37588991.

Reddy PL, Shanmugasundaram S. Optimizing process parameters for controlled drug delivery: a quality by design (QBD) approach in naltrexone microspheres. AAPS Pharm Sci Tech. 2024;25(5):105. doi: 10.1208/s12249-024-02830-w, PMID 38724807.

P LR, Shanmugasundaram S. QBD approach for design and characterization of pramlintide microspheres for controlled drug release. J Pharm Innov. 2023;18(4):2325-47. doi: 10.1007/s12247-023-09795-6.

Siraskar PR, Mishra DK. In vivo estimation of optimized floating microspheres design by QBD approach. Res J Pharm Technol. 2023;16(8):3697-700. doi: 10.52711/0974-360X.2023.00608.

Asha BR, Goudanavar P, Koteswara Rao GS, Gandla K, Raghavendra Naveen N, Majeed S. QBD driven targeted pulmonary delivery of dexamethasone loaded chitosan microspheres: biodistribution and pharmacokinetic study. Saudi Pharm J. 2023;31(9):101711. doi: 10.1016/j.jsps.2023.101711, PMID 37564747.

Karmakar S, Poddar S, Khanam J. Understanding the effects of associated factors in the development of microsponge based drug delivery: a statistical quality by design (QBD) approach towards optimization. AAPS Pharm Sci Tech. 2022;23(7):256. doi: 10.1208/s12249-022-02409-3, PMID 36114372.

Alnaim AS, Shah H, Nair AB, Mewada V, Patel S, Jacob S. QBD based approach to optimize niosomal gel of levosulpiride for transdermal drug delivery. Gels. 2023;9(3):213. doi: 10.3390/gels9030213, PMID 36975662.

Elkady OA, Tadros MI, El Laithy HM. QBD approach for novel crosslinker free ionotropic gelation of risedronate sodium chitosan nebulizable microspheres: optimization and characterization. AAPS Pharm Sci Tech. 2019;21(1):14. doi: 10.1208/s12249-019-1561-2, PMID 31807950.

Patil K, Gujarathi N, Sharma C, Ojha S, Goyal S, Agrawal Y. Quality by design-driven nanostructured lipid scaffold of apixaban: optimization characterization and pharmacokinetic evaluation. Pharmaceutics. 2024;16(7):910. doi: 10.3390/pharmaceutics16070910, PMID 39065607.

Munot NM, Shinde YD, Shah P, Patil A, Patil SB, Bhinge SD. Formulation and evaluation of chitosan PLGA biocomposite scaffolds incorporated with quercetin liposomes made by QBD approach for improved healing of oral lesions. AAPS Pharm Sci Tech. 2023;24(6):147. doi: 10.1208/s12249-023-02584-x, PMID 37380851.

Farazin A, Mahjoubi S. Dual functional hydroxyapatite scaffolds for bone regeneration and precision drug delivery. J Mech Behav Biomed Mater. 2024 Sep;157:106661. doi: 10.1016/j.jmbbm.2024.106661, PMID 39018918.

Zielinska A, Karczewski J, Eder P, Kolanowski T, Szalata M, Wielgus K. Scaffolds for drug delivery and tissue engineering: the role of genetics. J Control Release. 2023 Jul;359:207-23. doi: 10.1016/j.jconrel.2023.05.042, PMID 37286137.

Magill E, Demartis S, Gavini E, Permana AD, Thakur RR, Adrianto MF. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev. 2023 Aug;199:114950. doi: 10.1016/j.addr.2023.114950, PMID 37295560.

Muhindo D, Ashour EA, Almutairi M, Repka MA. Development of subdermal implants using direct powder extrusion 3D printing and hot-melt extrusion technologies. AAPS Pharm Sci Tech. 2023;24(8):215. doi: 10.1208/s12249-023-02669-7, PMID 37857937.

Al Litani K, Ali T, Robles Martinez PR, Buanz A. 3D printed implantable drug delivery devices for womens health: formulation challenges and regulatory perspective. Adv Drug Deliv Rev. 2023 Jul;198:114859. doi: 10.1016/j.addr.2023.114859, PMID 37149039.

Gunawardana M, Remedios Chan M, Sanchez D, Fanter R, Webster S, Webster P. Preclinical considerations for long-acting delivery of tenofovir alafenamide from subdermal implants for HIV pre-exposure prophylaxis. Pharm Res. 2023;40(7):1657-72. doi: 10.1007/s11095-022-03440-6, PMID 36418671.

Behrends W, Wulf K, Raggl S, Frohlich M, Eickner T, Dohr D. Dual drug delivery in cochlear implants: in vivo study of dexamethasone combined with diclofenac or immunophilin inhibitor MM284 in guinea pigs. Pharmaceutics. 2023;15(3):726. doi: 10.3390/pharmaceutics15030726, PMID 36986587.

Jarosz M, Pawlik A, Szuwarzynski M, Jaskula M, Sulka GD. Nanoporous anodic titanium dioxide layers as potential drug delivery systems: drug release kinetics and mechanism. Colloids Surf B Biointerfaces. 2016;143:447-54. doi: 10.1016/j.colsurfb.2016.03.073, PMID 27037782.

Wojcik Pastuszka D, Krzak J, Macikowski B, Berkowski R, Osinski B, Musial W. Evaluation of the release kinetics of a pharmacologically active substance from model intra articular implants replacing the cruciate ligaments of the knee. Materials (Basel). 2019;12(8):1202. doi: 10.3390/ma12081202, PMID 31013801.

Suh MS, Kastellorizios M, Tipnis N, Zou Y, Wang Y, Choi S. Effect of implant formation on drug release kinetics of in situ forming implants. Int J Pharm. 2021;592:120105. doi: 10.1016/j.ijpharm.2020.120105, PMID 33232755.

Zamoume O, Thibault S, Regnie G, Mecherri MO, Fiallo M, Sharrock P. Macroporous calcium phosphate ceramic implants for sustained drug delivery. Mater Sci Eng C. 2011;31(7):1352-6. doi: 10.1016/j.msec.2011.04.020.

Kunrath MF, Shah FA, Dahlin C. Bench to bedside: feasibility of nano-engineered and drug delivery biomaterials for bone-anchored implants and periodontal applications. Materials Today Bio. 2023 Feb;18:100540. doi: 10.1016/j.mtbio.2023.100540.

Alshimaysawee S, Fadhel Obaid R, Al Gazally ME, Alexis Ramirez Coronel A, Bathaei MS. Recent advancements in metallic drug eluting implants. Pharmaceutics. 2023;15(1):223. doi: 10.3390/pharmaceutics15010223, PMID 36678852.

Zlomke C, Barth M, Mader K. Polymer degradation induced drug precipitation in PLGA implants why less is sometimes more. Eur J Pharm Biopharm. 2019;139:142-52. doi: 10.1016/j.ejpb.2019.03.016, PMID 30902733.

Singh M, Gill AS, Deol PK, Agrawal A, Sidhu SS. Drug-eluting titanium implants for localised drug delivery. J Mater Res. 2022;37(16):2491-511. doi: 10.1557/s43578-022-00609-y.

Lehner E, Liebau A, Menzel M, Schmelzer CE, Knolle W, Scheffler J. Characterization of PLGA versus peg-plga intracochlear drug delivery implants: degradation kinetics morphological changes and pH alterations. J Drug Deliv Sci Technol. 2024 Sep;99:105972. doi: 10.1016/j.jddst.2024.105972.

Chavda VP, Jogi G, Paiva Santos AC, Kaushik A. Biodegradable and removable implants for controlled drug delivery and release application. Expert Opin Drug Deliv. 2022;19(10):1177-81. doi: 10.1080/17425247.2022.2110065, PMID 35929995.

Panezai J, Van Dyke T. Polyunsaturated fatty acids and their immunomodulatory actions in periodontal disease. Nutrients. 2023;15(4):821. doi: 10.3390/nu15040821, PMID 36839179.

Matusiewicz H. Potential release of in vivo trace metals from metallic medical implants in the human body: from ions to nanoparticles a systematic analytical review. Acta Biomater. 2014;10(6):2379-403. doi: 10.1016/j.actbio.2014.02.027, PMID 24565531.

Wang X, Burgess DJ. Drug release from in situ forming implants and advances in release testing. Adv Drug Deliv Rev. 2021;178:113912. doi: 10.1016/j.addr.2021.113912, PMID 34363860.

Wang X, Roy M, Wang R, Kwok O, Wang Y, Wang Y. Towards in vitro in vivo correlation models for in situ forming drug implants. J Control Release. 2024 Aug;372:648-60. doi: 10.1016/j.jconrel.2024.06.058, PMID 38936743.

Sun Z, LI M, Qian S, GU Y, Huang J, LI J. Development of a detection method for 10 non-steroidal anti-inflammatory drugs residues in four swine tissues by ultra-performance liquid chromatography with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2023 May 15;1223:123722. doi: 10.1016/j.jchromb.2023.123722, PMID 37099884.

Kaya DI, Satır S, Oztas B, Yıldırım H. Avoiding sinus floor elevation by placing a palatally angled implant: a morphological study using cross-sectional analysis determined by CBCT. Diagnostics (Basel). 2024;14(12):1242. doi: 10.3390/diagnostics14121242, PMID 38928657.

Onder YB, Alpaslan NZ. Peri-implant phenotype calprotectin and MMP-8 levels in cases diagnosed with peri-implant disease. Clin Oral Investig. 2024;28(7):404. doi: 10.1007/s00784-024-05798-w, PMID 38940878.

Yuksel M, Kaya SN. Speech perception as a function of the number of channels and channel interaction in cochlear implant simulation. Medeni Med J. 2023;38(4):276-83. doi: 10.4274/MMJ.galenos.2023.73454, PMID 38148725.

Gohel M, Delvadia R, Parikh D, Zinzuwadia M, Soni C, Sarvaiya K. Simplified mathematical approach for back calculation in wagner nelson method: applications in in vitro and in vivo correlation (IVIVC) and formulation development work. Pharm Rev. 2005;3:1-8.

Xiong J, XU Y, HE S, Zhang Y, Wang Z, Wang S. Pharmacokinetics and bioavailability of tildipirosin in rabbits following single-dose intravenous and intramuscular administration. J Vet Pharmacol Ther. 2020;43(5):448-53. doi: 10.1111/jvp.12882, PMID 32542744.

Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27-31. doi: 10.4103/0976-0105.177703, PMID 27057123.

Jacob S, Nair AB, Morsy MA. Dose conversion between animals and humans: a practical solution. Indian J Pharm Educ Res. 2022;56(3):600-7. doi: 10.5530/ijper.56.3.108.

Nair A, Morsy MA, Jacob S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug Dev Res. 2018;79(8):373-82. doi: 10.1002/ddr.21461, PMID 30343496.

Elmeliegy M, Udata C, Liao K, Yin D. Considerations on the calculation of the human equivalent dose from toxicology studies for biologic anticancer agents. Clin Pharmacokinet. 2021;60(5):563-7. doi: 10.1007/s40262-021-00987-2, PMID 33651328.

Hosseini A, Shorofi SA, Davoodi A. Starting dose calculation for medicinal plants in animal studies; recommendation of a simple and reliable method. Res J Pharmacogn. 2018;5:1-7.

Zou P, YU Y, Zheng N, Yang Y, Paholak HJ, YU LX. Applications of human pharmacokinetic prediction in first in human dose estimation. AAPS J. 2012;14(2):262-81. doi: 10.1208/s12248-012-9332-y, PMID 22407287.

Hemanth A, Abdul HA, Devanna N. Evaluating the best polyethylene glycol as solid dispersion carrier by taking etoricoxib as a model drug. Asian J Pharm Clin Res. 2019;12(3):250-5. doi: 10.22159/ajpcr.2019.v12i3.30251.

Limongi T, Susa F, Allione M, DI Fabrizio E. Drug delivery applications of three dimensional printed (3DP) mesoporous scaffolds. Pharmaceutics. 2020;12(9):851. doi: 10.3390/pharmaceutics12090851, PMID 32911620.

Akila RM, Janani M. Development characterization and evaluation of the antimicrobial properties of biodegradable porous scaffolds loaded with natural vanillin. Int J Pharm Pharm Sci. 2023;15(11):31-7. doi: 10.22159/ijpps.2023v15i11.48987.

Soni G, Yadav KS, Gupta MK. QBD based approach for formulation development of spray-dried microparticles of erlotinib hydrochloride for sustained release. J Drug Deliv Sci Technol. 2020;57:101684. doi: 10.1016/j.jddst.2020.101684.

Javed MN, Kohli K, Amin S. Risk assessment integrated QBD approach for development of optimized bicontinuous mucoadhesive limicubes for oral delivery of rosuvastatin. AAPS Pharm Sci Tech. 2018;19(3):1377-91. doi: 10.1208/s12249-018-0951-1, PMID 29388027.

Ali R, Mehta P, Kyriaki Monou PK, Arshad MS, Panteris E, Rasekh M. Electrospinning/electrospraying coatings for metal microneedles: a design of experiments (DOE) and quality by design (QBD) approach. Eur J Pharm Biopharm. 2020;156:20-39. doi: 10.1016/j.ejpb.2020.08.023, PMID 32871196.

AW MS, Khalid KA, Gulati K, Atkins GJ, Pivonka P, Findlay DM. Characterization of drug release kinetics in trabecular bone from titania nanotube implants. Int J Nanomedicine. 2012;7:4883-92. doi: 10.2147/IJN.S33655, PMID 23028217.

Dhas SK, Deshmukh G. Formulation and evaluation of meloxicam microspheres for colon targeted drug delivery. Asian J Pharm Clin Res. 2021;14(8):45-51. doi: 10.22159/ajpcr.2021.v14i8.38482.

Gobin AS, Butler CE, Mathur AB. Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin chitosan blend. Tissue Eng. 2006;12(12):3383-94. doi: 10.1089/ten.2006.12.3383, PMID 17518675.

Gulati K, AW MS, Findlay D, Losic D. Local drug delivery to the bone by drug-releasing implants: perspectives of nano-engineered titania nanotube arrays. Ther Deliv. 2012;3(7):857-73. doi: 10.4155/tde.12.66, PMID 22900467.

Dominas C, Deans K, Packard R, Jonas O. Preparation and sterilization of an implantable drug delivery microdevice for clinical use. MethodsX. 2021;8:101382. doi: 10.1016/j.mex.2021.101382, PMID 34430278.

Stewart SA, Dominguez Robles J, Donnelly RF, Larraneta E. Implantable polymeric drug delivery devices: classification manufacture materials and clinical applications. Polymers. 2018;10(12):1379. doi: 10.3390/polym10121379, PMID 30961303.

Patel RB, Solorio L, WU H, Krupka T, Exner AA. Effect of injection site on in situ implant formation and drug release in vivo. J Control Release. 2010;147(3):350-8. doi: 10.1016/j.jconrel.2010.08.020, PMID 20728486.

Rahman S, Gulati K, Kogawa M, Atkins GJ, Pivonka P, Findlay DM. Drug diffusion integration and stability of nanoengineered drug-releasing implants in bone ex‐vivo. J Biomed Mater Res A. 2016;104(3):714-25. doi: 10.1002/jbm.a.35595, PMID 26481558.

Abpeikar Z, Milan PB, Moradi L, Anjomshoa M, Asadpour S. Influence of pore sizes in 3D-scaffolds on mechanical properties of scaffolds and survival distribution and proliferation of human chondrocytes. Mech Adv Mater Struct. 2022;29(26):4911-22. doi: 10.1080/15376494.2021.1943077.

LI P, Zhang W, Spintzyk S, Schweizer E, Krajewski S, Alexander D. Impact of sterilization treatments on biodegradability and cytocompatibility of zinc-based implant materials. Mater Sci Eng C Mater Biol Appl. 2021;130:112430. doi: 10.1016/j.msec.2021.112430, PMID 34702515.

Yadav A, Yadav M, Yadav AK, Mishra S, Jena J, Rai JK. 3D printing technique: a review on the applications in pharmaceutical manufacturing. Int J Pharm Pharm Sci. 2024;16(4):11-7. doi: 10.22159/ijpps.2024v16i4.50139.

Published

07-01-2025

How to Cite

KUMAR, S., & MOHAN, M. (2025). BOX-BEHNKEN OPTIMIZATION OF MELOXICAM MICROCAPSULE SCAFFOLDS FOR PRECISION DRUG DELIVERY IN ARTHRITIS: ENHANCED STABILITY, EFFECTIVE STERILIZATION, AND IN VIVO THERAPEUTIC POTENTIAL. International Journal of Applied Pharmaceutics, 17(1), 410–425. https://doi.org/10.22159/ijap.2025v17i1.52160

Issue

Section

Original Article(s)