THE EFFECT OF DIFFERENT CONCENTRATION OF β-CYCLODEXTRIN AND GUM ARABIC ON THE MICROENCAPSULATED MORINGA SEED OIL BY USING THE SPRAY DRYING METHOD
DOI:
https://doi.org/10.22159/ijap.2025v17i1.52164Keywords:
Moringa seed oil, Microencapsulation, β-cyclodextrin, Gum arabic, Physico-chemical characteristicsAbstract
Objective: The aim of this study was to determine the impact of various concentrations of β-cyclodextrin and gum arabic on the characteristics of Microencapsulated Moringa Seed Oil (MSO).
Methods: The soxhlation method was used to extract MSO. The resulting MSO was microencapsulated employing a spray dryer. The variations in of β-cyclodextrin: Gum arabic concentrations were made to determine the coating material suitable for this formula. The characterization includes organoleptic tests, FTIR, encapsulation efficiency, morphology, particle size and moisture content of microencapsulated MSO.
Results: The results obtained from the particle size for F1, F2, F3, F4, and F5 were 5.42; 4.29; 4.23; 4.34; 5.15 µm, respectively. Then the percentage of encapsulation efficiency obtained was 74.42±0.13; 78.81±0.12; 82.27±0.07; 93.94±0.09; 71.50±0.11, respectively. The IR spectra shows no chemical interactions that occurred in the formulation of microencapsulated MSO.
Conclusion: In conclusion, microencapsulated MSO formulated with β-cyclodextrin (40% w/v) was recommended as the most optimal formula with a smaller particle size (4.34 µm) among others and exhibited the highest microencapsulation efficiency.
Downloads
References
Gharsallah K, Rezig L, Msaada K, Chalh A, Soltani T. Chemical composition and profile characterization of Moringa oleifera seed oil. S Afr J Bot. 2021 Mar;137:475-82. doi: 10.1016/j.sajb.2020.11.014.
Iranloye YM, Fapojuwo OO, Abioye VF, Olaniran AF. Potentials of moringa (Moringa oleifera) seed oil in enhancing the nutritional quality and stability of soybean oil. Agrosearch. 2020;20(1):59-68. doi: 10.4314/agrosh.v20i1.6S.
Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Moringa oleifera seeds and oil: characteristics and uses for human health. Int J Mol Sci. 2016;17(12):2141. doi: 10.3390/ijms17122141, PMID 27999405.
Elsayed FI, Elgendey F, Waheed RM, El Shemy MA. Protective effect of Moringa oleifera seed extract on cisplatin-induced nephrotoxicity in rats. Int J Pharm Pharm Sci. 2021;13(5):78-82. doi: 10.22159/ijpps.2021v13i5.41125.
Anwar F, Bhanger MI. Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. J Agric Food Chem. 2003 Oct 22;51(22):6558-63. doi: 10.1021/jf0209894, PMID 14558778.
Gutierrez Luna K, Ansorena D, Astiasaran I. Fatty acid profile sterols and squalene content comparison between two conventional (olive oil and linseed oil) and three non-conventional vegetable oils (echium oil hempseed oil and moringa oil). J Food Sci. 2022;87(4):1489-99. doi: 10.1111/1750-3841.16111, PMID 35279846.
Bassey K, Mabowe M, Mothibe M, Witika BA. Chemical characterization and nutritional markers of South African Moringa oleifera seed oils. Molecules. 2022;27(18):5749. doi: 10.3390/molecules27185749, PMID 36144484.
Aly AA, Maraei RW, Ali HG. Fatty acids profile and chemical composition of Egyptian Moringa oleifera seed oils. J Am Oil Chem Soc. 2016;93(3):397-404. doi: 10.1007/s11746-015-2781-6.
Guzman Albores JM, Bojorquez Velazquez E, DE Leon Rodriguez A, Calva Cruz OJ, Barba DE LA Rosa AP, Ruiz Valdiviezo VM. Comparison of Moringa oleifera oils extracted with supercritical fluids and hexane and characterization of seed storage proteins in defatted flour. Food Biosci. 2021 Apr;40:100830. doi: 10.1016/j.fbio.2020.100830.
Tsaknis J, Lalas S, Gergis V, Dourtoglou V, Spiliotis V. Characterization of Moringa oleifera variety Mbololo seed oil of Kenya. J Agric Food Chem. 1999 Nov;47(11):4495-9. doi: 10.1021/jf9904214, PMID 10552840.
Ogbunugafo HA, Eneh FU, Ozumba AN, Igwo Ezikp MN, Okpuzor J, Igwilo IO. Physicochemical and antioxidant properties of Moringa oleifera seed oil. Pak J Nutr. 2011;10(5):409-14. doi: 10.3923/pjn.2011.409.414.
Choe E, Min DB. Mechanisms and factors for edible oil oxidation. Comp Rev Food Sci Food Safe. 2006;5(4):169-86. doi: 10.1111/j.1541-4337.2006.00009.x.
Alehosseini E, Jafari SM. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry. Trends Food Sci Technol. 2019 Sep;91:116-28. doi: 10.1016/j.tifs.2019.07.003.
Yekdane N, Goli SA. Effect of pomegranate juice on characteristics and oxidative stability of microencapsulated pomegranate seed oil using spray drying. Food Bioprocess Technol. 2019;12(9):1614-25. doi: 10.1007/s11947-019-02325-8.
Figueiredo JA, Silva CR, Souza Oliveira MF, Norcino LB, Campelo PH, Botrel DA. Microencapsulation by spray chilling in the food industry: opportunities challenges and innovations. Trends Food Sci Technol. 2022;120:274-87. doi: 10.1016/j.tifs.2021.12.026, PMID 36569414.
Reineccius G, Patil S, Anantharamkrishnan V. Encapsulation of orange oil using fluidized bed granulation. Molecules. 2022;27(6):1854. doi: 10.3390/molecules27061854, PMID 35335218.
Mankar SD, Shaikh SB. Microencapsulation is an advance technique of drug formulation for novel drug delivery system. Res J Sci Technol. 2020;12(3):201-10. doi: 10.5958/2349-2988.2020.00028.5.
DE Araujo JS, DE Souza EL, Oliveira JR, Gomes AC, Kotzebue LR, DA Silva Agostini DL. Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: preparation characterization antimicrobial and antioxidant activities. Int J Biol Macromol. 2020 Jan 15;143:991-9. doi: 10.1016/j.ijbiomac.2019.09.160, PMID 31669659.
Huang J, Wang Q, Chu L, Xia Q. Liposome chitosan hydrogel bead delivery system for the encapsulation of linseed oil and quercetin: preparation and in vitro characterization studies. LWT. 2020 Jan;117:108615. doi: 10.1016/j.lwt.2019.108615.
Premi M, Sharma HK. Effect of different combinations of maltodextrin gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried drumstick (Moringa oleifera) oil. Int J Biol Macromol. 2017;105(1):1232-40. doi: 10.1016/j.ijbiomac.2017.07.160, PMID 28757420.
Wang Y, Jiang ZT, LI R. Complexation and molecular microcapsules of Litsea cubeba essential oil with β-cyclodextrin and its derivatives. Eur Food Res Technol. 2009;228(6):865-73. doi: 10.1007/s00217-008-0999-3.
Kringel DH, Antunes MD, Klein B, Crizel RL, Wagner R, DE Oliveira RP. Production characterization and stability of orange or eucalyptus essential oil/β‐cyclodextrin inclusion complex. J Food Sci. 2017;82(11):2598-605. doi: 10.1111/1750-3841.13923, PMID 29083485.
SU Z, Qin Y, Zhang K, BI Y, Kong F. Inclusion complex of exocarpium Citri grandis essential oil with β‐cyclodextrin: characterization stability and antioxidant activity. J Food Sci. 2019;84(6):1592-9. doi: 10.1111/1750-3841.14623, PMID 31162880.
Surini S, Azzahrah FU, Ramadon D. Microencapsulation of grape seed oil (Vitis vinifera L.) with gum arabic as a coating polymer by crosslinking emulsification method. Int J App Pharm. 2018;10(6):194-8. doi: 10.22159/ijap.2018v10i6.24093.
Laureanti EJ, Paiva TS, DE Matos Jorge LM, Jorge RM. Microencapsulation of bioactive compound extracts using maltodextrin and gum arabic by spray and freeze drying techniques. Int J Biol Macromol. 2023;253(4):126969. doi: 10.1016/j.ijbiomac.2023.126969, PMID 37730006.
Chew SC, Tan CP, Nyam KL. Microencapsulation of refined kenaf (Hibiscus cannabinus L.) seed oil by spray drying using β-cyclodextrin/gum arabic/sodium caseinate. J Food Eng. 2018 Nov;237:78-85. doi: 10.1016/j.jfoodeng.2018.05.016.
Athikomkulchai S, Tunit P, Tadtong S, Jantrawut P, Sommano SR, Chittasupho C. Moringa oleifera seed oil formulation physical stability and chemical constituents for enhancing skin hydration and antioxidant activity. Cosmetics. 2020;8(1):2. doi: 10.3390/cosmetics8010002.
Carneiro HC, Tonon RV, Grosso CR, Hubinger MD. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J Food Eng. 2013;115(4):443-51. doi: 10.1016/j.jfoodeng.2012.03.033.
George TT, Oyenihi AB, Rautenbach F, Obilana AO. Characterization of Moringa oleifera leaf powder extract encapsulated in maltodextrin and/or gum arabic coatings. Foods. 2021;10(12):3044. doi: 10.3390/foods10123044, PMID 34945595.
Mohd Setapar SH, Nian Yian L, Mohd Sharif NS. Extraction of rubber (Hevea brasiliensis) seed oil using soxhlet method. Mal J Fund Appl Sci. 2014;10(1):1-6. doi: 10.11113/mjfas.v10n1.61.
Xiang S, Yao X, Zhang W, Zhang K, Fang Y, Nishinari K. Gum arabic stabilized conjugated linoleic acid emulsions: emulsion properties in relation to interfacial adsorption behaviors. Food Hydrocoll. 2015 Jun;48:110-6. doi: 10.1016/j.foodhyd.2015.01.033.
Bouyer E, Mekhloufi G, Rosilio V, Grossiord JL, Agnely F. Proteins polysaccharides and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? Int J Pharm. 2012;436(1-2):359-78. doi: 10.1016/j.ijpharm.2012.06.052, PMID 22759644.
Garcia Segovia P, Barreto Palacios V, Breton J, Martinez Monzo J. Microencapsulation of essential oils using β-cyclodextrin: applications in gastronomy. J Culinary Sci Technol. 2011;9(3):150-7. doi: 10.1080/15428052.2011.594728.
Ayala Zavala JF, Soto Valdez H, Gonzalez Leon A, Alvarez Parrilla E, Martin Belloso O, Gonzalez Aguilar GA. Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2008;60(3-4):359-68. doi: 10.1007/s10847-007-9385-1.
Sarkar S, Gupta S, Variyar PS, Sharma A, Singhal RS. Hydrophobic derivatives of guar gum hydrolyzate and gum arabic as matrices for microencapsulation of mint oil. Carbohydr Polym. 2013;95(1):177-82. doi: 10.1016/j.carbpol.2013.02.070, PMID 23618256.
Abarca RL, Rodriguez FJ, Guarda A, Galotto MJ, Bruna JE. Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem. 2016 Apr;196:968-75. doi: 10.1016/j.foodchem.2015.10.023, PMID 26593579.
Reineccius GA. The spray drying of food flavors. Drying Technology. 2004;22(6):1289-324. doi: 10.1081/DRT-120038731.
Zhao H, Fei X, Cao L, Zhao S, Zhou J. Changes in microcapsules under heating: the effect of particle size on thermal stability and breakability. J Mater Sci. 2020;55(9):3902-11. doi: 10.1007/s10853-019-04297-8.
Zhang L, WU K, Sun G, Liu R, Luo J. Investigation of particle size effect on the performance of micro/nanocapsules and composite coatings. Colloids and Surfaces a: Physicochemical and Engineering Aspects. 2023 Oct 20;675:132020. doi: 10.1016/j.colsurfa.2023.132020.
Zhao R, Sun J, Torley P, Wang D, Niu S. Measurement of particle diameter of Lactobacillus acidophilus microcapsule by spray drying and analysis on its microstructure. World J Microbiol Biotechnol. 2008;24(8):1349-54. doi: 10.1007/s11274-007-9615-0.
Tonon RV, Grosso CR, Hubinger MD. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Res Int. 2011;44(1):282-9. doi: 10.1016/j.foodres.2010.10.018.
Parambil A, Maanvizhi S, Kuttalingam A, Chitra V. Spray-dried chitosan microspheres for sustained delivery of trifluoperazine hydrochloride: formulation and in vitro evaluation. Int J App Pharm. 2023;15(3):200-7. doi: 10.22159/ijap.2023v15i3.47222.
Lujan Medina GA, Ventura J, Ascacio Valdes JA, Cerqueira M, Villa DB, Contreras Esquivel JC. Microencapsulation of ellagic acid from pomegranate husk and karaya gum by spray drying. Int J Pharm Pharm Sci. 2015;7(13).
Gong L, LI T, Chen F, Duan X, Yuan Y, Zhang D. An inclusion complex of eugenol into β-cyclodextrin: preparation and physicochemical and antifungal characterization. Food Chem. 2016 Apr 1;196:324-30. doi: 10.1016/j.foodchem.2015.09.052, PMID 26593497.
Minemoto Y, Hakamata K, Adachi S, Matsuno R. Oxidation of linoleic acid encapsulated with gum arabic or maltodextrin by spray drying. J Microencapsul. 2002;19(2):181-9. doi: 10.1080/02652040110065468, PMID 11837973.
Vibhute S, Kasture V, Kasture S, Kendre P, Rupnar S, Pande V. Design and characterization of Moringa oleifera seed oil impregnated anti-inflammatory topical microdispersion. Pharm Lett. 2015;7(3):7-16.
FU X, SU J, Hou L, Zhu P, Hou Y, Zhang K. Physicochemical and thermal characteristics of Moringa oleifera seed oil. Adv Compos Hybrid Mater. 2021;4(3):685-95. doi: 10.1007/s42114-021-00302-4.
Magalhaes ER, Fonseca DE Menezes NN, Silva FL, Alves Garrido JW, Angelica Dos Santos Bezerra Sousa MAd, Dos Santos ES. Effect of oil extraction on the composition structure and coagulant effect of Moringa oleifera seeds. J Clean Prod. 2021 Jan 10;279:123902. doi: 10.1016/j.jclepro.2020.123902.
Published
How to Cite
Issue
Section
Copyright (c) 2025 NUUR AANISAH, YAYUK ISTIYAS, NURLINA IBRAHIM, MUHAMMAD SULAIMAN ZUBAIR, EVI SULASTRI
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.