DESIGN AND DEVELOPMENT OF SOLID LIPID NANOPARTICLES CONTAINING ROSUVASTATIN USING CENTRAL COMPOSITE DESIGN
DOI:
https://doi.org/10.22159/ijap.2025v17i1.52360Keywords:
Rosuvastatin calcium, Central composite design, Solid lipid nanoparticle, emulsifierAbstract
Objective: Rosuvastatin calcium, a BCS class II drug with low solubility, was optimized using a central composite design to improve its bioavailability.
Methods: The study utilized Kolliphor RH 40 as an emulsifier and glyceryl monostearate as a solid lipid in preparing solid lipid nanoparticle dispersion, optimizing formulations based on mean dissolution time and entrapment efficiency.
Results: The study analyzed the entrapment efficiency and mean dissolution time of the prepared solid lipid nanoparticles. The range of mean dissolution time was found 7.1+0.5 to 8.9+0.6 h. The highest entrapment efficiency was found to be 90.28%, with a standard deviation of 0.2. The linear model was chosen based on data precision and trend, while the quadratic model was selected for mean dissolution time. The 3D view graph indicated the model/equation followed by the formulations. The optimized formulation had a particle size of 16.16+10 nm and particle size distribution index to 0.729+002, indicating high homogeneity. Transmission electron microscopy images and dynamic light scattering data were in correlation. XRD, DSC used to analyze the drug's transformation into amorphous form. The dissolution profile of different formulations was plotted, and the optimized formulation followed the Korsmeyer-Peppas model. FTIR showed drug peaks, indicating no interaction.
Conclusion: The study suggested that the bioavailability of rosuvastatin calcium can be enhanced through the preparation of solid lipid nanoparticles of smaller size and sustained release of rosuvastatin.
Downloads
References
DE Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133-49. doi: 10.2147/ijn.s596, PMID 18686775, PMCID PMC2527668.
Ghasemiyeh P, Mohammadi Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications advantages and disadvantages. Res Pharm Sci. 2018 Aug;13(4):288-303. doi: 10.4103/1735-5362.235156, PMID 30065762.
Elmowafy M, Al Sanea MM. Nanostructured lipid carriers (NLCs) as drug delivery platform: advances in formulation and delivery strategies. Saudi Pharm J. 2021 Sep;29(9):999-1012. doi: 10.1016/j.jsps.2021.07.015, PMID 34588846.
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009 Jul;71(4):349-58. doi: 10.4103/0250-474X.57282, PMID 20502539.
Naseri N, Valizadeh H, Zakeri Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure preparation and application. Adv Pharm Bull. 2015 Sep;5(3):305-13. doi: 10.15171/apb.2015.043, PMID 26504751.
Dawoud MH, Fayez AM, Mohamed RA, Sweed NM. Enhancement of the solubility of rosuvastatin calcium by nanovesicular formulation: a systematic study based on a quality by design approach. Proceedings. 2021;78(1):34. doi: 10.3390/IECP2020-08698.
MA P, Dong X, Swadley CL, Gupte A, Leggas M, Ledebur HC. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp mediated multiple drug resistance in leukemia. J Biomed Nanotechnol. 2009 Apr;5(2):151-61. doi: 10.1166/jbn.2009.1021, PMID 20055093.
El Telbany DF, El Telbany RF, Zakaria S, Ahmed KA, El Feky YA. Formulation and assessment of hydroxyzine HCl solid lipid nanoparticles by dual emulsification technique for transdermal delivery. Biomed Pharmacother. 2021 Nov;143:112130. doi: 10.1016/j.biopha.2021.112130, PMID 34560549.
Rai N, Madni A, Faisal A, Jamshaid T, Khan MI, Khan MM. Glyceryl monostearate-based solid lipid nanoparticles for controlled delivery of docetaxel. Curr Drug Deliv. 2021;18(9):1368-76. doi: 10.2174/1567201818666210203180153, PMID 33538673.
Talele P, Sahu S, Mishra AK. Physicochemical characterization of solid lipid nanoparticles comprised of glycerol monostearate and bile salts. Colloids Surf B Biointerfaces. 2018 Dec 1;172:517-25. doi: 10.1016/j.colsurfb.2018.08.067, PMID 30212689.
HE J, Huang S, Sun X, Han L, Chang C, Zhang W. Carvacrol loaded solid lipid nanoparticles of propylene glycol monopalmitate and glyceryl monostearate: preparation characterization and synergistic antimicrobial activity. Nanomaterials (Basel). 2019;9(8):1162. doi: 10.3390/nano9081162, PMID 31416170.
Torrado Salmeron C, Guarnizo Herrero V, Torrado G, Pena MA, Torrado-Santiago S, DE LA Torre Iglesias PM. Solid dispersions of atorvastatin with kolliphor RH40: enhanced supersaturation and improvement in a hyperlipidemic rat model. Int J Pharm. 2023 Jan 25;631:122520. doi: 10.1016/j.ijpharm.2022.122520, PMID 36581105.
Yasir M, Chauhan I, Ameeduzzafar Z, Verma M, Noorulla KM, Abdurazak T, Nabil A, Misbahu H, Dinesh P, Gurmesa G, Debesa D, Sara UVS, Kumar N. Buspirone loaded solid lipid nanoparticles for amplification of nose to brain efficacy: formulation development optimization by box behnken design in vitro characterization and in vivo biological evaluation. J Drug Deliv Sci Technol. 2021 Feb;61:112164. doi: 10.1016/j.jddst.2020.102164.
Sohail S, Shah FA, Zaman SU, Almari AH, Malik I, Khan SA. Melatonin delivered in solid lipid nanoparticles ameliorated its neuroprotective effects in cerebral ischemia. Heliyon. 2023;9(9):e19779. doi: 10.1016/j.heliyon.2023.e19779, PMID 37809765.
Emami J, Mohiti H, Hamishehkar H, Varshosaz J. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using taguchi and box behnken design. Res Pharm Sci. 2015;10(1):17-33. PMID 26430454, PMCID PMC4578209.
Dhiman N, Awasthi R, Sharma B, Kharkwal H, Kulkarni GT. Lipid nanoparticles as carriers for bioactive delivery. Front Chem. 2021 Apr 23;9:580118. doi: 10.3389/fchem.2021.580118, PMID 33981670.
Bhupinder K, Newton MJ. Acyclovir solid lipid nanoparticles for skin drug delivery: fabrication characterization and in vitro study. Recent Pat Drug Deliv Formul Pat. Drug. 2017;11(2):132-46. doi: 10.2174/1872211311666170117123403, PMID 28124592.
Stefanov SR, Andonova VY. Lipid nanoparticulate drug delivery systems: recent advances in the treatment of skin disorders. Pharmaceuticals (Basel). 2021;14(11):1083. doi: 10.3390/ph14111083, PMID 34832865, PMCID PMC8619682.
Garg A, Sharma GS, Goyal AK, Ghosh G, SI SC, Rath G. Recent advances in topical carriers of anti-fungal agents. Heliyon. 2020;6(8):e04663. doi: 10.1016/j.heliyon.2020.e04663, PMID 32904164.
Chen HH, Huang WC, Chiang WH, Liu TI, Shen MY, Hsu YH. pH responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein mediated drug efflux of multidrug-resistant cancer cells. Int J Nanomedicine. 2015;10:5035-48. doi: 10.2147/IJN.S86053, PMID 26346762.
Kumar M, Bishnoi RS, Shukla AK, Jain CP. Techniques for formulation of nanoemulsion drug delivery system: a review. Prev Nutr Food Sci. 2019;24(3):225-34. doi: 10.3746/pnf.2019.24.3.225, PMID 31608247, PMCID PMC6779084.
Song KC, HS Lee, IY Choung, KI Cho, Y Ahn, EJ Choi. The effect of type of organic phase solvents on the particle size of poly (d,l-lactide-co-glycolide) nanoparticles. Colloids and Surfaces a: Physicochemical and Engineering Aspects. 2006 Mar 15; 276(1-3):162–7. doi: 10.1016/j.colsurfa.2005.10.064.
Weerapol Y, Manmuan S, Chaothanaphat N, Limmatvapirat S, Sirirak J, Tamdee P. New approach for preparing solid lipid nanoparticles with volatile oil loaded quercetin using the phase inversion temperature method. Pharmaceutics. 2022;14(10):1984. doi: 10.3390/pharmaceutics14101984, PMID 36297420, PMCID PMC9607647.
Dara T, Vatanara A, Nabi Meybodi M, Vakilinezhad MA, Malvajerd SS, Vakhshiteh F. Erythropoietin loaded solid lipid nanoparticles: preparation optimization and in vivo evaluation. Colloids Surf B Biointerfaces. 2019 Jun 1;178:307-16. doi: 10.1016/j.colsurfb.2019.01.027, PMID 30878805.
Nandini PT, Doijad RC, Shivakumar HN, Dandagi PM. Formulation and evaluation of gemcitabine loaded solid lipid nanoparticles. Drug Deliv. 2015;22(5):647-51. doi: 10.3109/10717544.2013.860502, PMID 24283392.
Kommavarapu P, Maruthapillai A, Palanisamy K. Preparation characterization and evaluation of elvitegravir loaded solid lipid nanoparticles for enhanced solubility and dissolution rate. Trop J Pharm Res. 2015;14(9):1549-56. doi: 10.4314/tjpr.v14i9.2.
Vemuri VD, Lankalapalli S. Cocrystal construction between rosuvastatin calcium and L-asparagine with enhanced solubility and dissolution rate. Turk J Pharm Sci. 2021;18(6):790-8. doi: 10.4274/tjps.galenos.2021.62333, PMID 34979738.
Fatehi Hassanabad A. Current perspectives on statins as potential anticancer therapeutics: clinical outcomes and underlying molecular mechanisms. Transl Lung Cancer Res. 2019;8(5):692-9. doi: 10.21037/tlcr.2019.09.08, PMID 31737505.
Ahmed TA, Elimam H, Alrifai AO, Nadhrah HM, Masoudi LY, Sairafi WO. Rosuvastatin lyophilized tablets loaded with flexible chitosomes for improved drug bioavailability anti-hyperlipidemic and anti-oxidant activity. Int J Pharm. 2020 Oct 15;588:119791. doi: 10.1016/j.ijpharm.2020.119791, PMID 32827673.
Ahmed TA. Development of rosuvastatin flexible lipid-based nanoparticles: promising nanocarriers for improving intestinal cells cytotoxicity. BMC Pharmacol Toxicol. 2020;21(1):14. doi: 10.1186/s40360-020-0393-8, PMID 32085802.
Yanez JA, Wang SW, Knemeyer IW, Wirth MA, Alton KB. Intestinal lymphatic transport for drug delivery. Adv Drug Deliv Rev. 2011;63(10-11):923-42. doi: 10.1016/j.addr.2011.05.019, PMID 21689702.
Zhang Z, LU Y, QI J, WU W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm Sin B. 2021;11(8):2449-68. doi: 10.1016/j.apsb.2020.12.022, PMID 34522594.
Nguyen TT, Duong VA. Solid lipid nanoparticles. Encyclopedia. 2022;2(2):952-73. doi: 10.3390/encyclopedia2020063.
Gulati P, Dewangan HK. Aceclofenac loaded solid lipid nanoparticles: optimization in vitro and ex-vivo evaluation. Int J App Pharm. 2023;15(4):184-90. doi: 10.22159/ijap.2023v15i4.48047.
Granato D, Calado V. The use and importance of design of experiments (DOE) in process modeling in food science and technology. In: Mathematical and Statistical Methods in Food Science and Technology. 2014;1:1-18. doi: 10.1002/9781118434635.ch1.
Bevilacqua A, Corbo MR, Sinigaglia M. Design of experiments: a powerful tool in food microbiology; 2010. p. 1419-29.
Onugwu AL, Attama AA, Nnamani PO, Onugwu SO, Onuigbo EB, Khutoryanskiy VV. Development and optimization of solid lipid nanoparticles coated with chitosan and poly (2-ethyl-2-oxazoline) for ocular drug delivery of ciprofloxacin. Journal of Drug Delivery Science and Technology. 2022 Aug;74:103527. doi: 10.1016/j.jddst.2022.103527.
Ortiz AC, Yanez O, Salas Huenuleo E, Morales JO. Development of a nanostructured lipid carrier (NLC) by a low energy method comparison of release kinetics and molecular dynamics simulation. Pharmaceutics. 2021;13(4):531. doi: 10.3390/pharmaceutics13040531, PMID 33920242.
Rohit B, Pal KI. A method to prepare solid lipid nanoparticles with improved entrapment efficiency of hydrophilic drugs. Curr Nanosci. 2013;9(2):211-20. doi: 10.2174/1573413711309020008.
Montenegro L, Sarpietro MG, Ottimo S, Puglisi G, Castelli F. Differential scanning calorimetry studies on sunscreen loaded solid lipid nanoparticles prepared by the phase inversion temperature method. Int J Pharm. 2011;415(1-2):301-6. doi: 10.1016/j.ijpharm.2011.05.076, PMID 21679757.
Shah M, Agrawal YK, Garala K, Ramkishan A. Solid lipid nanoparticles of a water-soluble drug ciprofloxacin hydrochloride. Indian J Pharm Sci. 2012;74(5):434-42. doi: 10.4103/0250-474X.108419, PMID 23716872.
Shen J, Burgess DJ. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: recent developments and challenges. Drug Deliv Transl Res. 2013;3(5):409-15. doi: 10.1007/s13346-013-0129-z, PMID 24069580.
Uner M. Characterization and imaging of solid lipid nanoparticles and nanostructured lipid carriers. In: Aliofkhazraei M, editor. Handbook of nanoparticles. Berlin: Springer International Publishing; 2016. p. 117-41.
Kumar S, Randhawa JK. Preparation and characterization of paliperidone loaded solid lipid nanoparticles. Colloids Surf B Biointerfaces. 2013;102:562-8. doi: 10.1016/j.colsurfb.2012.08.052, PMID 23104026.
Madkhali OA. Perspectives and prospective on solid lipid nanoparticles as drug delivery systems. Molecules. 2022 Feb;27(5):1543. doi: 10.3390/molecules27051543, PMID 35268643.
Satapathy MK, Yen TL, Jan JS, Tang RD, Wang JY, Taliyan R. Solid lipid nanoparticles (SLNs): an advanced drug delivery system targeting brain through BBB. Pharmaceutics. 2021;13(8):1183. doi: 10.3390/pharmaceutics13081183, PMID 34452143.
Ekambaram P, Abdul HS. Formulation and evaluation of solid lipid nanoparticles of ramipril. J Young Pharm. 2011;3(3):216-20. doi: 10.4103/0975-1483.83765, PMID 21897661.
Ghadiri M, Fatemi S, Vatanara A, Doroud D, Najafabadi AR, Darabi M. Loading hydrophilic drug in solid lipid media as nanoparticles: statistical modeling of entrapment efficiency and particle size. Int J Pharm. 2012;424(1-2):128-37. doi: 10.1016/j.ijpharm.2011.12.037, PMID 22227603.
Awasthi R, Bhushan B, Kulkarni GT. Targeting chronic inflammatory lung diseases using advanced drug delivery systems. Amsterdam: Elsevier; 2020. p. 171-209.
Shah M, Pathak K. Development and statistical optimization of solid lipid nanoparticles of simvastatin by using 23 full factorial design. AAPS Pharm Sci Tech. 2010;11(2):489-96. doi: 10.1208/s12249-010-9414-z, PMID 20309652.
Trotta M, Debernardi F, Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification diffusion technique. Int J Pharm. 2003;257(1-2):153-60. doi: 10.1016/s0378-5173(03)00135-2, PMID 12711170.
Wang N, Hsu C, Zhu L, Tseng S, Hsu JP. Influence of metal oxide nanoparticles concentration on their zeta potential. J Colloid Interface Sci. 2013 Oct 1;407:22-8. doi: 10.1016/j.jcis.2013.05.058, PMID 23838331.
Akbari B, Tavandashti MP, Zandrahimi M. Particle size characterization of nanoparticles a practical approach. Iran J Mater Sci Eng. 2011;8(2):48-56.
Apostolou M, Assi S, Fatokun AA, Khan I. The effects of solid and liquid lipids on the physicochemical properties of nanostructured lipid carriers. J Pharm Sci. 2021;110(8):2859-72. doi: 10.1016/j.xphs.2021.04.012, PMID 33901564.
Dhoranwala KA, Shah P, Shah S. Formulation optimization of rosuvastatin calcium loaded solid lipid nanoparticles by 32 full factorial designs. Nanoworld J. 2015;1(4):112-21. doi: 10.17756/nwj.2015-015.
Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ. Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by a double emulsion method. J Control Release. 1998;50(1-3):31-40. doi: 10.1016/s0168-3659(97)00106-5, PMID 9685870.
Reddy KR, Satyanarayana SV, Reddy VJ. Development and evaluation of clobetasol-loaded solid lipid nanoparticles for topical treatment of psoriasis. Int J App Pharm. 2019;11(5):143-50. doi: 10.22159/ijap.2019v11i5.33592.
Alshora DH, Ibrahim MA, Elzayat E, Almeanazel OT, Alanazi F. Rosuvastatin calcium nanoparticles: improving bioavailability by formulation and stabilization codesign. Plos One. 2018;13(7):e0200218. doi: 10.1371/journal.pone.0200218, PMID 29985967.
Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. doi: 10.3390/pharmaceutics10020057, PMID 29783687.
Akanda M, Mithu MS, Douroumis D. Solid lipid nanoparticles: an effective lipid-based technology for cancer treatment. Journal of Drug Delivery Science and Technology. 2023 Sep;86:104709. doi: 10.1016/j.jddst.2023.104709.
Schubert MA, Muller Goymann CC. Solvent injection as a new approach for manufacturing lipid nanoparticles evaluation of the method and process parameters. Eur J Pharm Biopharm. 2003;55(1):125-31. doi: 10.1016/s0939-6411(02)00130-3, PMID 12551713.
Kesharwani R, Sachan A, Singh S, Patel D. Formulation and evaluation of solid lipid nanoparticle (SLN) based topical gel of etoricoxib. J App Pharm Sci. 2016;6(10):124-31. doi: 10.7324/JAPS.2016.601017.
Qushawy M, Nasr A. Solid lipid nanoparticles (SLNs) as nano drug delivery carriers: preparation characterization and application. Int J App Pharm. 2019;12(1):1-9. doi: 10.22159/ijap.2020v12i1.35312.
Dudhipala N, Veerabrahma K. Improved anti-hyperlipidemic activity of rosuvastatin calcium via lipid nanoparticles: pharmacokinetic and pharmacodynamic evaluation. Eur J Pharm Biopharm. 2017 Jan;110:47-57. doi: 10.1016/j.ejpb.2016.10.022, PMID 27810472.
Hunter RJ. Zeta potential in colloid science: principles and applications volume 2 of colloid science colloid science. A series of monographs volume 2 of human communication research series 385; 1981.
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015 Sep;33(9):941-51. doi: 10.1038/nbt.3330, PMID 26348965.
Dhoranwala KA, Shah P, Shah S. Formulation optimization of rosuvastatin calcium loaded solid lipid nanoparticles by 32 full factorial design. Nanoworld J. 2015;1(4):112-21. doi: 10.17756/nwj.2015-015.
Duong VA, Nguyen TT, Maeng HJ. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules. 2020 Oct 18;25(20):4781. doi: 10.3390/molecules25204781, PMID 33081021.
Kishore CR, Mohan GV. Structural identification and estimation of rosuvastatin calcium-related impurities in rosuvastatin calcium tablet dosage form. Anal Chem Res. 2017;12:17-27. doi: 10.1016/j.ancr.2016.11.002.
Jores K, Mehnert W, Drechsler M, Bunjes H, Johann C, Mader K. Investigations on the structure of solid lipid nanoparticles (SLN) and oil loaded solid lipid nanoparticles by photon correlation spectroscopy field flow fractionation and transmission electron microscopy. J Control Release. 2004 Mar 5;95(2):217-27. doi: 10.1016/j.jconrel.2003.11.012, PMID 14980770.
Published
How to Cite
Issue
Section
Copyright (c) 2025 DISHARI DUTTA, PRANABESH CHAKRABORTY, CHOWDHURY MOBASWAR HOSSAIN
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.