FORMULATION DEVELOPMENT AND PHARMACOKINETIC STUDIES OF NIRMATRELVIR LOADED SOLID LIPID NANOPARTICLES USING BOX-BEHNKEN DESIGN
DOI:
https://doi.org/10.22159/ijap.2025v17i1.52380Keywords:
Solid lipid nanoparticles, Anti-viral agent, PaxlovidTM, Nirmatrelvir, Compritol888 ATO, Box-behnken design, Risk assessment analysisAbstract
Objective: This study aims to develop a new lipid formulation known as Solid Lipid Nanoparticles (SLNs) to increase the oral bioavailability of Nirmatrelvir (NMT) by facilitating intestinal lymphatic transport. Nirmatrelvir is a crucial antiviral agent utilized for the treatment and prophylaxis of Coronavirus disease 2019 (COVID-19).
Methods: Nirmatrelvir loaded solid lipid nanoparticles (NMT-SLNs) were formulated using the microemulsion technique with compritol 888 ATO, and the optimization of lipid and surfactant concentrations, as well as homogenization time, was achieved through the box-behnken design. The resulting NMT-SLNs underwent evaluation for percentage entrapment efficiency, Particle diameter, Zeta potential, Polydispersity index (PDI), and In vitro drug release studies.
Results: Optimized formulation (NF8), yielded a particle of 183.26±2.12 nm size with a narrow distribution of 0.071±0.004PDI, negative zeta potential of-24.63±1.92 mV, percent entrapment of 86.94±2.08%, and cumulative drug release of 84.42±3.16% over 24 h. Furthermore, solid-state characterization by PXRD, surface morphology assessment by SEM, and an in vivo distribution study employing albino wistar rats were conducted. The findings demonstrated a 10.14-fold increase in relative bioavailability and an 85% enhancement in brain uptake compared to pure NMT solution following oral administration.
Conclusion: This research highlights the potential advantages of solid lipid nanoparticles (SLNs) in enhancing the oral delivery of nirmatrelvir. finally, the study concluded that SLNs serve as a promising vehicle for improving bioavailability and facilitating effective brain delivery.
Downloads
References
Owen DR, Allerton CM, Anderson AS, Aschenbrenner L, Avery M, Berritt S. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science. 2021;374(6575):1586-93. doi: 10.1126/science.abl4784, PMID 34726479.
Cascella M, Rajnik M, Aleem A. Features evaluation and treatment of coronavirus (COVID-19). In: Treasure Island (FL); 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554776/. [Last accessed on 22 Nov 2024].
Simsek Yavuz S, Komsuoglu Celikyurt FI. An update of anti-viral treatment of COVID-19. Turk J Med Sci. 2021;51(SI-1):3372-90. doi: 10.3906/sag-2106-250, PMID 34391321.
Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH. An overview of severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J Med Chem. 2016;59(14):6595-628. doi: 10.1021/acs.jmedchem.5b01461, PMID 26878082.
Ledford H. Long COVID treatments: why the world is still waiting. Nature. 2022;608(7922):258-60. doi: 10.1038/d41586-022-02140-w, PMID 35945375.
Lamb YN. Correction to: nirmatrelvir plus ritonavir: first approval. Drugs. 2022;82(9):1025. doi: 10.1007/s40265-022-01737-9, PMID 35689762.
Rut W, Groborz K, Zhang L, Sun X, Zmudzinski M, Pawlik B. SARS-CoV-2 Mpro inhibitors and activity-based probes for patient sample imaging. Nat Chem Biol. 2021 Feb;17(2):222-8. doi: 10.1038/s41589-020-00689-z, PMID 33093684.
Ahmad B, Batool M, Ain QU, Kim MS, Choi S. Exploring the binding mechanism of PF-07321332 SARS-CoV-2 protease inhibitor through molecular dynamics and binding free energy simulations. Int J Mol Sci. 2021 Aug 24;22(17):9124. doi: 10.3390/ijms22179124, PMID 34502033.
Eng H, Dantonio AL, Kadar EP, Obach RS, DI L, Lin J. Disposition of nirmatrelvir an orally bioavailable inhibitor of SARS-CoV-2 3C-like protease across animals and humans. Drug Metab Dispos. 2022 May;50(5):576-90. doi: 10.1124/dmd.121.000801, PMID 35153195.
Lam C, Patel P. Nirmatrelvir Ritonavir. In: Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK585126. [Last accessed on 22 Nov 2024].
Marzi M, Vakil MK, Bahmanyar M, Zarenezhad E. Paxlovid: mechanism of action synthesis and in silico study. Bio Med Res Int. 2022 Jul 7;2022:7341493. doi: 10.1155/2022/7341493, PMID 35845944.
Katzenmaier S, Markert C, Riedel KD, Burhenne J, Haefeli WE, Mikus G. Determining the time course of CYP3A inhibition by potent reversible and irreversible CYP3A inhibitors using a limited sampling strategy. Clin Pharmacol Ther. 2011 Nov;90(5):666-73. doi: 10.1038/clpt.2011.164, PMID 21937987.
Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science. 2003 Jun 13;300(5626):1763-7. doi: 10.1126/science.1085658, PMID 12746549.
Marzolini C, Kuritzkes DR, Marra F, Boyle A, Gibbons S, Flexner C. Recommendations for the management of drug-drug interactions between the COVID-19 antiviral Nirmatrelvir/Ritonavir (Paxlovid) and comedications. Clin Pharmacol Ther. 2022 Dec;112(6):1191-200. doi: 10.1002/cpt.2646, PMID 35567754.
Chan GC, Lui GC, Wong CN, Yip SS, LI TC, Cheung CS. Safety profile and clinical and virological outcomes of nirmatrelvir ritonavir treatment in patients with advanced chronic kidney disease and coronavirus disease 2019. Clin Infect Dis. 2023 Nov 17;77(10):1406-12. doi: 10.1093/cid/ciad371, PMID 37531093.
Charness ME, Gupta K, Stack G, Strymish J, Adams E, Lindy DC. Rebound of SARS-CoV-2 infection after nirmatrelvir ritonavir treatment. N Engl J Med. 2022 Sep 15;387(11):1045-7. doi: 10.1056/NEJMc2206449, PMID 36069968.
Boucau J, Uddin R, Marino C, Regan J, Flynn JP, Choudhary MC. Characterization of virologic rebound following nirmatrelvir ritonavir treatment for coronavirus disease 2019 (COVID-19). Clin Infect Dis. 2023 Feb 8;76(3):e526-9. doi: 10.1093/cid/ciac512, PMID 35737946.
Anderson AS, Caubel P, Rusnak JM, EPIC-HR Trial Investigators. Nirmatrelvir-ritonavir and viral load rebound in COVID-19. N Engl J Med. 2022 Sep 15;387(11):1047-9. doi: 10.1056/NEJMc2205944, PMID 36069818.
Cho HY, Lee YB. Nano-sized drug delivery systems for lymphatic delivery. J Nanosci Nanotechnol. 2014 Jan;14(1):868-80. doi: 10.1166/jnn.2014.9122, PMID 24730304.
Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of micro particulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev. 2001 Aug 23;50(1-2):107-42. doi: 10.1016/s0169-409x(01)00152-1, PMID 11489336.
Pardeshi C, Rajput P, Belgamwar V, Tekade A, Patil G, Chaudhary K. Solid lipid-based nanocarriers: an overview. Acta Pharm. 2012 Dec;62(4):433-72. doi: 10.2478/v10007-012-0040-z, PMID 23333884.
Priyanka P, Sri Rekha M, Devi AS. Review on formulation and evaluation of solid lipid nanoparticles for vaginal application. Int J Pharm Pharm Sci. 2022 Jan;14(1):1-8. doi: 10.22159/ijpps.2022v14i1.42595.
Cai S, Yang Q, Bagby TR, Forrest ML. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev. 2011 Sep 10;63(10-11):901-8. doi: 10.1016/j.addr.2011.05.017, PMID 21712055.
Mura P, Maestrelli F, D Ambrosio M, Luceri C, Cirri M. Evaluation and comparison of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as vectors to develop hydrochlorothiazide effective and safe pediatric oral liquid formulations. Pharmaceutics. 2021 Mar 24;13(4):437. doi: 10.3390/pharmaceutics13040437, PMID 33804945.
Gupta S, Kesarla R, Chotai N, Misra A, Omri A. Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high-pressure homogenization using design of experiments for brain targeting and enhanced bioavailability. Bio Med Res Int. 2017;2017:5984014. doi: 10.1155/2017/5984014, PMID 28243600.
Ekambaram P, Abdul HS. Formulation and evaluation of solid lipid nanoparticles of ramipril. J Young Pharm. 2011 Jul;3(3):216-20. doi: 10.4103/0975-1483.83765, PMID 21897661.
Priyadarsini S, Lahoti SR. Quality by design: optimization of letrozole solid lipid nanoparticle for breast cancer. Ind J Pharm Edu Res. 2022;56(4):1013-24. doi: 10.5530/ijper.56.4.182.
Chokshi NV, Khatri HN, Patel MM. Formulation optimization and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis. Drug Dev Ind Pharm. 2018 Dec;44(12):1975-89. doi: 10.1080/03639045.2018.1506472, PMID 30058392.
Shah RM, Malherbe F, Eldridge D, Palombo EA, Harding IH. Physicochemical characterization of solid lipid nanoparticles (SLNs) prepared by a novel microemulsion technique. J Colloid Interface Sci. 2014 Aug 15;428:286-94. doi: 10.1016/j.jcis.2014.04.057, PMID 24910064.
Qushawy M, Nasr A, Abd Alhaseeb M, Swidan S. Design optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics. 2018 Feb 23;10(1):26. doi: 10.3390/pharmaceutics10010026, PMID 29473897.
Kashanian S, Azandaryani AH, Derakhshandeh K. New surface modified solid lipid nanoparticles using N-glutaryl phosphatidylethanolamine as the outer shell. Int J Nanomedicine. 2011;6:2393-401. doi: 10.2147/IJN.S20849, PMID 22114489.
Singh S, Dobhal AK, Jain A, Pandit JK, Chakraborty S. Formulation and evaluation of solid lipid nanoparticles of a water-soluble drug: zidovudine. Chem Pharm Bull (Tokyo). 2010 May;58(5):650-5. doi: 10.1248/cpb.58.650, PMID 20460791.
Priyanka K, Sathali AA. Preparation and evaluation of montelukast sodium-loaded solid lipid nanoparticles. J Young Pharm. 2012 Jul;4(3):129-37. doi: 10.4103/0975-1483.100016, PMID 23112531.
Aslam R, Tiwari V, Upadhyay P, Tiwari A. Revolutionizing therapeutic delivery: diosgenin loaded solid lipid nanoparticles unleash advanced carriers. Int J App Pharm. 2024 Jan;16(1):124-33. doi: 10.22159/ijap.2024v16i1.49306.
Jain S, Mistry MA, Swarnakar NK. Enhanced dermal delivery of acyclovir using solid lipid nanoparticles. Drug Deliv Transl Res. 2011 Oct;1(5):395-406. doi: 10.1007/s13346-011-0036-0, PMID 25788423.
Shafique M, Khan MA, Khan WS, Maqsood-ur-Rehman, Ahmad W, Khan S. Fabrication characterization and in vivo evaluation of famotidine loaded solid lipid nanoparticles for boosting oral bioavailability. J Nanomater. 2017;2017:1-10. doi: 10.1155/2017/7357150.
Martens Lobenhoffer J, Boger CR, Kielstein J, Bode Boger SM. Simultaneous quantification of nirmatrelvir and ritonavir by LC-MS/MS in patients treated for COVID-19. J Chromatogr B Analyt Technol Biomed Life Sci. 2022 Dec 1;1212:123510. doi: 10.1016/j.jchromb.2022.123510, PMID 36274268.
Hassan H, Bello RO, Adam SK, Alias E, Meor Mohd Affandi MM, Shamsuddin AF. Acyclovir loaded solid lipid nanoparticles: optimization characterization and evaluation of its pharmacokinetic profile. Nanomaterials (Basel). 2020 Sep 9;10(9):1785. doi: 10.3390/nano10091785, PMID 32916823.
LI S, JI Z, Zou M, Nie X, Shi Y, Cheng G. Preparation characterization pharmacokinetics and tissue distribution of solid lipid nanoparticles loaded with tetrandrine. AAPS Pharm Sci Tech. 2011 Sep;12(3):1011-8. doi: 10.1208/s12249-011-9665-3, PMID 21811889.
Phalak SD, Bodke V, Yadav R, Pandav S, Ranaware M. A systematic review on nano drug delivery system: solid lipid nanoparticles (SLN). Int J Curr Pharm Sci. 2024 Jan;16(1):10-20. doi: 10.22159/ijcpr.2024v16i1.4020.
Aburahma MH, Badr Eldin SM. Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv. 2014 Dec;11(12):1865-83. doi: 10.1517/17425247.2014.935335, PMID 25152197.
Gupta B, Sharma R. Formulation and in vitro characterization of the solid lipid nanoparticles of naftopidil for enhancing oral bioavailability. Asian J Pharm Clin Res. 2023;16(2):77-82. doi: 10.22159/ajpcr.2023.v16i2.46465.
Ekambaram P, Abdul HS. Formulation and evaluation of solid lipid nanoparticles of ramipril. J Young Pharm. 2011 Jul;3(3):216-20. doi: 10.4103/0975-1483.83765, PMID 21897661.
Chen WN, Shaikh MF, Bhuvanendran S, Date A, Ansari MT, Radhakrishnan AK. Poloxamer 188 (P188) a potential polymeric protective agent for central nervous system disorders: a systematic review. Curr Neuropharmacol. 2022;20(4):799-808. doi: 10.2174/1570159X19666210528155801, PMID 34077349.
Xia Y, FU S, MA Q, Liu Y, Zhang N. Application of nano delivery systems in lymph nodes for tumor immunotherapy. Nanomicro Lett. 2023;15(1):145. doi: 10.1007/s40820-023-01125-2, PMID 37269391.
Qushawy M, Prabahar K, Abd-Alhaseeb M, Swidan S, Nasr A. Preparation and evaluation of carbamazepine solid lipid nanoparticle for alleviating seizure activity in pentylenetetrazole kindled mice. Molecules. 2019 Nov 2;24(21):3971. doi: 10.3390/molecules24213971, PMID 31684021.
Gupta S, Kesarla R, Chotai N, Misra A, Omri A. Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high-pressure homogenization using design of experiments for brain targeting and enhanced bioavailability. Bio Med Res Int. 2017;2017:5984014. doi: 10.1155/2017/5984014, PMID 28243600.
Galli M, Migliano F, Fasano V, Silvani A, Passarella D, Citarella A. Nirmatrelvir: from discovery to modern and alternative synthetic approaches. Processes. 2024;12(6):1242. doi: 10.3390/pr12061242.
Remya PN, Damodharan N. Formulation development and characterization of cilnidipine loaded solid lipid nanoparticles. Asian J Pharm Clin Res. 2018;11(1):120-5. doi: 10.22159/ajpcr.2018.v11i9.24666.
Abdelbary G, Fahmy RH. Diazepam loaded solid lipid nanoparticles: design and characterization. AAPS Pharm Sci Tech. 2009;10(1):211-9. doi: 10.1208/s12249-009-9197-2, PMID 19277870.
Madgulkar AR, Padalkar RR, Amale SK. Preformulation studies of intranasal solid lipid nanoparticles of mometasone furoate. J Drug Delivery Ther. 2019;9(4):526-8. doi: 10.22270/jddt.v9i4.3100.
Shah J, Patel S, Bhairy S, Hirlekar R. Formulation optimization characterization and in vitro anti-cancer activity of curcumin loaded nanostructured lipid carriers. Int J Curr Pharm Sci. 2022 Jan;14(1):31-43. doi: 10.22159/ijcpr.2022v14i1.44110.
Paliwal R, Rai S, Vaidya B, Khatri K, Goyal AK, Mishra N. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine. 2009;5(2):184-91. doi: 10.1016/j.nano.2008.08.003, PMID 19095502.
Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 2016 Mar;11(6):673-92. doi: 10.2217/nnm.16.5, PMID 27003448.
Chattopadhyay N, Zastre J, Wong HL, WU XY, Bendayan R. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor atazanavir by a human brain endothelial cell line. Pharm Res. 2008 Oct;25(10):2262-71. doi: 10.1007/s11095-008-9615-2, PMID 18516666.
Published
How to Cite
Issue
Section
Copyright (c) 2025 SRI REKHA M., SANGEETHA S.
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.