DESIGN, DEVELOPMENT, AND CHARACTERIZATION OF CURCUMIN-LOADED NANO TABLET IN ENDOMETRIOSIS TREATMENT
DOI:
https://doi.org/10.22159/ijap.2025v17i1.52533Keywords:
Endometriosis, Nanosponges, Cyclodextrins, Curcuminoids, Box-behnken design, HistopathologyAbstract
Objective: The goal was to simplify the manufacture of curcumin-loaded-nanosponges (CUNS) and test their vaginal delivery of CU for endometriosis in mice.
Methods: The independent parameters of CU-β-Cyclodextrin (CU-β-CD) NS generation were improved using box-behnken design (BBD). BBD with three factors and three levels was used for the studies. The study used carbonyldiimidazole as a cross-linking agent and lyophilization to create CU-β-CDNS. The anti-endometriosis activity of nano-tablet was tested in mice with peritoneal endometriosis.
Results: The mean particle size was 76.78–154.56 nm, and the encapsulation effectiveness was 76.62–86.68%. Transmission Electron Microscopy showed that the polymer encapsulated CU. In vitro antioxidant activity showed that CU and CUNS had SC50 values of 5243.52±389.92 and 187.36±16.78 μg/ml, respectively. Bio-adhesion studies showed hydroxypropyl methylcellulose and xanthan gum performed better. The F1 and F2 formulations had better in vitro drug release at 12 h, with values of 97.12±2.38 and 95.34±3.24%, respectively. Photostability and simulated intestinal fluid testing were good. Endometriosis mice had leukocyte infiltration and fibrosis, while control mice had increased stromal vessel density and intact epithelium. However, CU nanogel greatly alleviated these issues. Histopathology demonstrated CUNS-pill corrected endometrial pathology.
Conclusion: The study advised CUNS-pill for endometriosis treatment.
Downloads
References
Friend DR. Drug delivery for the treatment of endometriosis and uterine fibroids. Drug Deliv Transl Res. 2017 Dec;7(6):829-39. doi: 10.1007/s13346-017-0423-2, PMID 28828592.
Zhao Y, Gong P, Chen Y, Nwachukwu JC, Srinivasan S, KO C. Dual suppression of estrogenic and inflammatory activities for targeting of endometriosis. Sci Transl Med. 2015 Jan 21;7(271):271ra9. doi: 10.1126/scitranslmed.3010626, PMID 25609169.
Bina F, Soleymani S, Toliat T, Hajimahmoodi M, Tabarrai M, Abdollahi M. Plant-derived medicines for treatment of endometriosis: a comprehensive review of molecular mechanisms. Pharmacol Res. 2019 Jan;139:76-90. doi: 10.1016/j.phrs.2018.11.008, PMID 30412733.
Saltan G, Suntar I, Ozbilgin S, Ilhan M, Demirel MA, OZ BE. Viburnum opulus L. a remedy for the treatment of endometriosis demonstrated by rat model of surgically induced endometriosis. J Ethnopharmacol. 2016 Dec;193:450-5. doi: 10.1016/j.jep.2016.09.029, PMID 27647013.
Liu JP, Lewith G, Little P, LI Q. Chinese herbal medicine for endometriosis. Flower a. Cochrane Database Syst Rev. 2012 May;5:CD006568.
Sarfaraz MD, Shaikh ZM, Doddayya H. Preparation and characterization of fluconazole topical nanosponge hydrogel. Int J Pharm Pharm Sci. 2024 Apr;16(4):18-26. doi: 10.22159/ijpps.2024v16i4.50589.
Bhagyavathi A, Sai Lakshmi TK, Sahitya DM, Bhavani B. Nanosponges a revolutionary targeted drug delivery nanocarrier: a review. Asian J Pharm Clin Res. 2023 Apr;16(4):3-9.
Chilajwar SV, Pednekar PP, Jadhav KR, Gupta GJ, Kadam VJ. Cyclodextrin based nanosponges: a propitious platform for enhancing drug delivery. Expert Opin Drug Deliv. 2014 Jan;11(1):111-20. doi: 10.1517/17425247.2014.865013, PMID 24298891.
Pawar S, Shende P, Trotta F. Diversity of β-cyclodextrin based nanosponges for transformation of actives. Int J Pharm. 2019 Jun;565:333-50. doi: 10.1016/j.ijpharm.2019.05.015, PMID 31082468.
Shraddha T, Shashikant D, Tanuja U, Nilesh K. Cyclodextrin in novel formulations and solubility enhancement techniques: a review. Int J Curr Pharm Res. 2024 Feb;16(2):9-18. doi: 10.22159/ijcpr.2024v16i2.4032.
Hema AN, Gaayathri G, Gundeti S. Development of orodispersible tablets of loratadine containing an amorphous solid dispersion of the drug in soluplus® using design of experiments. Int J Pharm Pharm Sci. 2023 Aug;15(8):19-27.
Duggi VR, Ambati SR. Preparation and evaluation of nanosponges-based tramadol HCl c/r tablets using design of experiment. Int J Appl Pharm. 2022 Mar;14(3):86-94.
N Politis S, Colombo P, Colombo G, M Rekkas D. Design of experiments (DoE) in Pharmaceutical development. Drug Dev Ind Pharm. 2017 Jun;43(6):889-901. doi: 10.1080/03639045.2017.1291672, PMID 28166428.
Konda M, Sampathi S. QBD approach for the development of capsaicin loaded stearic acid grafted chitosan polymeric micelles. Int J App Pharm. 2023 Apr;15(4):131-42. doi: 10.22159/ijap.2023v15i4.48101.
JA, Girigoswami A, Girigoswami K. Versatile applications of nanosponges in the biomedical field: a glimpse on SARS-COV-2 management. Bionanoscience. 2022;12(3):1018-31. doi: 10.1007/s12668-022-01000-1, PMID 35755139.
Sadjadi S, Malmir M, Heravi MM, Raja M. Magnetic hybrid of cyclodextrin nanosponge and polyhedral oligomeric silsesquioxane: efficient catalytic support for immobilization of Pd nanoparticles. Int J Biol Macromol. 2019;128:638-47. doi: 10.1016/j.ijbiomac.2019.01.181, PMID 30708003.
Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: a review. Acta Pharm. 2013 Mar;63(3):335-58. doi: 10.2478/acph-2013-0021, PMID 24152895.
Vij M, Dand N, Kumar L, Wadhwa P, Wani SU, Mahdi WA. Optimisation of a greener approach for the synthesis of cyclodextrin-based nanosponges for the solubility enhancement of domperidone a BCS Class II drug. Pharmaceuticals (Basel). 2023 Apr;16(4):567. doi: 10.3390/ph16040567, PMID 37111324.
Singireddy A, Rani Pedireddi SR, Nimmagadda S, Subramanian S. Beneficial effects of microwave-assisted heating versus conventional heating in synthesis of cyclodextrin-based nanosponges. Mater Today Proc. 2016 Nov;3(10):3951-9. doi: 10.1016/j.matpr.2016.11.055.
Moretton MA, Cohen L, Lepera L, Bernabeu E, Taira C, Hocht C. Enhanced oral bioavailability of nevirapine within micellar nanocarriers compared with Viramune(®). Colloids Surf B Biointerfaces. 2014 Oct 1;122:56-65. doi: 10.1016/j.colsurfb.2014.06.046, PMID 25016545.
Madan JR, Kamate VJ, Dua K, Awasthi R. Improving the solubility of nevirapine using a hydrotropy and mixed hydrotropy based solid dispersion approach. Polim Med. 2017 Feb;47(2):83-90. doi: 10.17219/pim/77093, PMID 30009585.
Sinha D, DE D, Ayaz A. Performance and stability analysis of curcumin dye as a photosensitizer used in nanostructured ZnO based DSSc. Spectrochim Acta A Mol Biomol Spectrosc. 2018 Mar;193:467-74. doi: 10.1016/j.saa.2017.12.058, PMID 29289745.
Volpatti D, Gulisano E, Spanghero M. Short note: infliximab recovery in a simulated intestinal fluid of the upper intestine tract. Hum Antibodies. 2019 Apr;27(4):241-6. doi: 10.3233/HAB-190378, PMID 30958344.
Nagar P, Singh K, Chauhan I, Verma M, Yasir M, Khan A. Orally disintegrating tablets: formulation preparation techniques and evaluation. J Appl Pharm Sci. 2011 Jun;30:35-45.
Brandt K, Barrangou R. Adaptive response to iterative passages of five lactobacillus species in simulated vaginal fluid. BMC Microbiol. 2020 Jan;20(1):339. doi: 10.1186/s12866-020-02027-8, PMID 33172400.
Somigliana E, Vigano P, Vignali M. Endometriosis and unexplained recurrent spontaneous abortion: pathological states resulting from aberrant modulation of natural killer cell function? Hum Reprod Update. 1999 Jan;5(1):40-51. doi: 10.1093/humupd/5.1.40, PMID 10333368.
Anandam S, Selvamuthukumar S. Fabrication of cyclodextrin nanosponges for quercetin delivery: physicochemical characterization photostability and antioxidant effects. J Mater Sci. 2014;49(23):8140-53. doi: 10.1007/s10853-014-8523-6.
Singireddy A, Subramanian S. Cyclodextrin nanosponges to enhance the dissolution profile of quercetin by inclusion complex formation. Part Sci Technol. 2016 Mar;34(3):341-6. doi: 10.1080/02726351.2015.1081658.
Anandam S, Selvamuthukumar S. Optimization of microwave-assisted synthesis of cyclodextrin nanosponges using response surface methodology. J Porous Mater. 2014;21(6):1015-23. doi: 10.1007/s10934-014-9851-2.
Singireddy A, Pedireddi SR, Subramanian S. Optimization of reaction parameters for synthesis of cyclodextrin nanosponges in controlled nanoscopic size dimensions. J Polym Res. 2019 Nov;26:1-2.
Naysmith A, Mian NS, Rana S. Development of conductive textile fabric using plackett burman optimized green synthesized silver nanoparticles and in situ polymerized polypyrrole. Green Chem Lett Rev. 2023 Jan;16(1):2158690. doi: 10.1080/17518253.2022.2158690.
Tran PH, Tran TT. Encapsulation of lipid-based formulations in porous carriers for controlled drug delivery. Curr Med Chem. 2021;28(42):8711-21. doi: 10.2174/0929867328666210420103841, PMID 33881970.
Torisu T, Maruno T, Yoneda S, Hamaji Y, Honda S, Ohkubo T. Friability testing as a new stress stability assay for biopharmaceuticals. J Pharm Sci. 2017 Oct;106(10):2966-78. doi: 10.1016/j.xphs.2017.05.035, PMID 28603019.
Bayer IS. Controlled drug release from nanoengineered polysaccharides. Pharmaceutics. 2023 May;15(5):1364. doi: 10.3390/pharmaceutics15051364, PMID 37242606.
Sarvan VH, Vashisth H. Types and application of pharmaceutical nanotechnology: a review. Int J Curr Pharm Sci. 2023 Mar;15(3):14-8. doi: 10.22159/ijcpr.2023v15i3.3010.
Published
How to Cite
Issue
Section
Copyright (c) 2025 UMMANGALBALAN ABHINI, GURUSAMY MARIAPPAN, BHAVNA KUMAR
This work is licensed under a Creative Commons Attribution 4.0 International License.