SILK FIBROIN-COATED MESOPOROUS SILICA NANOPARTICLES ENHANCE 6-THIOGUANINE DELIVERY AND CYTOTOXICITY IN BREAST CANCER CELLS
DOI:
https://doi.org/10.22159/ijap.2025v17i1.52882Keywords:
6-Thioguanine, Apoptosis, Breast adenocarcinoma, Cell cycle, Mesoporous silica nanoparticles (MSNs)Abstract
Objective: Breast cancer stands as the most prevalent form of cancer among women globally. Conventional chemotherapy, including the use of 6-Thioguanine (TG), often faces limitations such as poor drug solubility. In this research, we engineered a nanosystem consisting of Mesoporous Silica Nanoparticles (MSNs) loaded with TG and coated with Silk Fibroin (SF) to enhance the pharmacokinetic properties of this drug in targeting the MCF-7 breast cancer cell line.
Methods: In this study, we investigated the cytotoxicity of different formulations through MTT assay. Additionally, we analyze apoptosis and cell cycle phase distribution using flow cytometry. Furthermore, the absorption of MSN nanoparticles by MCF-7 cells was investigated using the fluorescent labeling technique by Dil fluorochrome.
Results: Our results represented the 48 hours Half Maximal Inhibitory Concentration (IC50) values of free TG, MSNs loaded with TG (TG@MSNs) and SF-coated MSNs loaded with TG (SF/TG@MSN) were 16.69, 10.96 and 8.01 μM, respectively. Moreover, the percentage of total early and late apoptosis differed among the treatments. Specifically, cells treated with free TG, TG@MSN and SF/TG@MSN exhibited 13.49%, 76.05% and 84.99% apoptosis, respectively. The results also indicated that administering free TG and TG-loaded MSN nanoparticles to MCF-7 cells resulted in cell cycle arrest at the G2/M phase after 48 hours of treatment.
Conclusion: Our study demonstrated that the SF/TG@MSN nanosystems effectively increased the cytotoxic effects of TG on the breast cancer cell line.Downloads
References
Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast Cancer Statistics, 2022. CA Cancer J Clin. 2022;72(6):524-41. https://doi.org/10.3322/caac.21754.
Gajbhiye sa, patil mp. Solid lipid nanoparticles: a review on different techniques and approaches to treat breast cancer. Int j app pharm. 2023;15(2):52-62.
Khoramdad M, Solaymani-Dodaran M, Kabir A, Ghahremanzadeh N, Hashemi EO, Fahimfar N, et al. Breast cancer risk factors in Iranian women: a systematic review and meta-analysis of matched case-control studies. Eur J Med Res. 2022;27(1):311. https://doi.org/10.1186/s40001-022-00952-0.
Kazeminia M, Salari N, Hosseinian-Far A, Akbari H, Bazrafshan M-R, Mohammadi M. The prevalence of breast cancer in Iranian women: a systematic review and meta-analysis. Indian J Gynecol Oncol. 2022;20(1):14. https://doi.org/10.1007/s40944-022-00613-4.
Youn HJ, Han W. A Review of the Epidemiology of Breast Cancer in Asia: Focus on Risk Factors. Asian Pac J Cancer Prev. 2020;21(4):867-80. https://doi.org/10.31557/APJCP.2020.21.4.867.
Cohen SY, Stoll CR, Anandarajah A, Doering M, Colditz GA. Modifiable risk factors in women at high risk of breast cancer: a systematic review. Breast Cancer Res. 2023;25(1):45. https://doi.org/10.1186/s13058-023-01636-1.
Yang KN, Zhang CQ, Wang W, Wang PC, Zhou JP, Liang XJ. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biol Med. 2014;11(1):34-43. https://doi.org/10.7497/j.issn.2095-3941.2014.01.003.
Ho BN, Pfeffer CM, Singh ATK. Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment. Anticancer Res. 2017;37(11):5975-81. https://doi.org/10.21873/anticanres.12044.
Truong NP, Quinn JF, Whittaker MR, Davis TP. Polymeric filomicelles and nanoworms: two decades of synthesis and application. Polym Chem. 2016;7(26):4295-312. https://doi.org/10.1039/C6PY00639F.
Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother. 2019;109:1100-11. https://doi.org/10.1016/j.biopha.2018.10.167.
Sharmiladevi S, Priya AS, Sujitha MV. Synthesis of mesoporous silica nanoparticles and drug loading for gram-positive and gram-negative bacteria. Int. J. Pharm. Pharm. Sci. 2016;8:196-201.12. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012;41(7):2590-605. https://doi.org/10.1039/c1cs15246g.
Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int J Pharm Investig. 2015;5(3):124-33. https://doi.org/10.4103/2230-973X.160844.
Meijer B, Mulder CJ, Peters GJ, van Bodegraven AA, de Boer NK. Efficacy of thioguanine treatment in inflammatory bowel disease: A systematic review. World J Gastroenterol. 2016;22(40):9012-21. https://doi.org/10.3748/wjg.v22.i40.9012.
Hashim AA, Abdul-Reda Hussein U, Bahir H, Amir AA, Muhammad FA, Ahjel S, et al. A DFT approach towards therapeutic potential of Novel borospherene as targeted drug delivery system for isoniazid drug. Mol Phys. 2024:e2311786. https://doi.org/10.1080/00268976.2024.2311786.
Zhang D, An X, Li Q, Man X, Chu M, Li H, et al. Thioguanine induces apoptosis in triple-negative breast cancer by regulating PI3K–AKT pathway. Front Oncol. 2020;10:524922. https://doi.org/10.3389/fonc.2020.524922.
Bayoumy AB, Simsek M, Seinen ML, Mulder CJJ, Ansari A, Peters GJ, et al. The continuous rediscovery and the benefit-risk ratio of thioguanine, a comprehensive review. Expert Opin Drug Metab Toxicol. 2020;16(2):111-23. https://doi.org/10.1080/17425255.2020.1719996.
Yamane K, Taylor K, Kinsella TJ. Mismatch repair-mediated G2/M arrest by 6-thioguanine involves the ATR-Chk1 pathway. Biochem Biophys Res Commun. 2004;318(1):297-302. https://doi.org/10.1016/j.bbrc.2004.04.030.
Cheng CP, Liu ST, Chiu YL, Huang SM, Ho CL. The Inhibitory Effects of 6-Thioguanine and 6-Mercaptopurine on the USP2a Target Fatty Acid Synthase in Human Submaxillary Carcinoma Cells. Front Oncol. 2021;11:749661. https://doi.org/10.3389/fonc.2021.749661.
Motasadizadeh H, Fatahi Y, Molla KV, Amanzadeh A, Farokhi M. New drug delivery systems based on polymeric silk fibroin. New Cell Mol Biotechnol J. 2019.
Panda N, Bissoyi A, Pramanik K, Biswas A. Development of novel electrospun nanofibrous scaffold from P. Ricini And A. Mylitta silk fibroin blend with improved surface and biological properties. Mater Sci Eng C Mater Biol Appl. 2015;48:521-32. https://doi.org/10.1016/j.msec.2014.12.010.
Karimi-Maleh H, Fallah Shojaei A, Karimi F, Tabatabaeian K, Shakeri S. Au nanoparticle loaded with 6-thioguanine anticancer drug as a new strategy for drug delivery. J Nanostruct. 2018;8(4):217-424. https://doi.org/10.22052/JNS.2018.04.012.
Rajashekaraiah R, Kumar PR, Prakash N, Rao GS, Devi VR, Metta M, et al. Anticancer efficacy of 6-thioguanine loaded chitosan nanoparticles with or without curcumin. Int J Biol Macromol. 2020;148:704-14. https://doi.org/10.1016/j.ijbiomac.2020.01.117.
Cheema SK, Gobin AS, Rhea R, Lopez-Berestein G, Newman RA, Mathur AB. Silk fibroin mediated delivery of liposomal emodin to breast cancer cells. Int J Pharm. 2007;341(1-2):221-9. https://doi.org/10.1016/j.ijpharm.2007.03.043.
Gupta V, Aseh A, Rios CN, Aggarwal BB, Mathur AB. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomedicine. 2009;4:115-22. https://doi.org/10.2147/ijn.s5581.
Mottaghitalab F, Farokhi M, Shokrgozar MA, Atyabi F, Hosseinkhani H. Silk fibroin nanoparticle as a novel drug delivery system. J Control Release. 2015;206:161-76. https://doi.org/10.1016/j.jconrel.2015.03.020.
Ahmed A, Sarwar S, Hu Y, Munir MU, Nisar MF, Ikram F, et al. Surface-modified polymeric nanoparticles for drug delivery to cancer cells. Expert Opin Drug Deliv. 2021;18(1):1-24. https://doi.org/10.1080/17425247.2020.1822321.
Altememy D, Khoobi M, Javar HA, Alsamarrai S, Khosravian P. Synthesis and characterization of silk fibroin-coated mesoporous silica nanoparticles for tioguanine targeting to leukemia. Int J Pharm Res. 2020. https://doi.org/10.31838/ijpr/2020.SP2.145.
Comsa S, Cimpean AM, Raica M. The Story of MCF-7 Breast Cancer Cell Line: 40 Years of Experience in Research. Anticancer Res. 2015;35(6):3147-54.
Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13(4):215. https://doi.org/10.1186/bcr2889.
Stockert JC, Horobin RW, Colombo LL, Blazquez-Castro A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging and labeling perspectives. Acta Histochem. 2018;120(3):159-67. https://doi.org/10.1016/j.acthis.2018.02.005.
Adan A, Kiraz Y, Baran Y. Cell proliferation and cytotoxicity assays. Curr Pharm Biotechnol. 2016;17(14):1213-21. https://doi.org/10.2174/1389201017666160808160513.
Jiang L, Tixeira R, Caruso S, Atkin-Smith GK, Baxter AA, Paone S, et al. Monitoring the progression of cell death and the disassembly of dying cells by flow cytometry. Nat Protoc. 2016;11(4):655-63. https://doi.org/10.1038/nprot.2016.028.
Crowley LC, Marfell BJ, Scott AP, Waterhouse NJ. Quantitation of Apoptosis and Necrosis by Annexin V Binding, Propidium Iodide Uptake and Flow Cytometry. Cold Spring Harb Protoc. 2016;2016(11):pdb. prot087288. https://doi.org/10.1101/pdb.prot087288.
Hashim AA-J, Rajab NA, Tekie FSM, Dinarvand R, Akrami M. Investigations factors affecting formulation of Anastrozole as nanostructured lipid carrier. Int J Pharm Res. 2020;12:937-45. https://doi.org/10.31838/ijpr/2020.SP3.122.
Yamane K, Taylor K, Kinsella TJ. Mismatch repair-mediated G2/M arrest by 6-thioguanine involves the ATR–Chk1 pathway. Biochem Biophys Res Commun. 2004;318(1):297-302. https://doi.org/https://doi.org/10.1016/j.bbrc.2004.04.030.
Trudeau M, Charbonneau F, Gelmon K, Laing K, Latreille J, Mackey J, et al. Selection of adjuvant chemotherapy for treatment of node-positive breast cancer. Lancet Oncol. 2005;6(11):886-98. https://doi.org/10.1016/S1470-2045(05)70424-1.
Vallet-Regi M, Colilla M, Izquierdo-Barba I, Manzano M. Mesoporous Silica Nanoparticles for Drug Delivery: Current Insights. Molecules. 2017;23(1):47. https://doi.org/10.3390/molecules23010047.
Fritze A, Hens F, Kimpfler A, Schubert R, Peschka-Süss R. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta Biomembr. 2006;1758(10):1633-40. https://doi.org/10.1016/j.bbamem.2006.05.028.
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1-18. https://doi.org/10.1016/j.colsurfb.2009.09.001.
Jafarizad A, Aghanejad A, Sevim M, Metin Ö, Barar J, Omidi Y, et al. Gold nanoparticles and reduced graphene oxide‐gold nanoparticle composite materials as covalent drug delivery systems for breast cancer treatment. Chemistry Select. 2017;2(23):6663-72. https://doi.org/10.1002/slct.201701178.
Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S, et al. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano. 2013;7(2):994-1005. https://doi.org/10.1021/nn3044066.
Bhavsar DB, Patel V, Sawant KK. Design and characterization of dual responsive mesoporous silica nanoparticles for breast cancer targeted therapy. Eur J Pharm Sci. 2020;152:105428. https://doi.org/10.1016/j.ejps.2020.105428.
Aghevlian S, Yousefi R, Faghihi R, Abbaspour A, Niazi A, Jaberipour M, et al. The improvement of anti-proliferation activity against breast cancer cell line of thioguanine by gold nanoparticles. Med Chem Res. 2013;22:303-11. https://doi.org/10.1007/s00044-012-0030-1.
Deka SR, Singh R, Verma P, Kumar P. Design, fabrication and evaluation of amphiphilic hyaluronic acid conjugates as efficient carriers of 6‐thioguanine for in vitro anticancer drug delivery applications. Polym Int. 2023;72(2):205-16. https://doi.org/10.1002/pi.6460.
Li H, An X, Zhang D, Li Q, Zhang N, Yu H, et al. Transcriptomics Analysis of the Tumor-Inhibitory Pathways of 6-Thioguanine in MCF-7 Cells via Silencing DNMT1 Activity. Onco Targets Ther. 2020;13:1211-23. https://doi.org/10.2147/OTT.S236543.
Zhang Y-Q, Shen W-D, Xiang R-L, Zhuge L-J, Gao W-J, Wang W-B. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanopart Res. 2007;9:885-900. https://doi.org/10.1007/s11051-006-9162-x.
Seib FP, Jones GT, Rnjak‐Kovacina J, Lin Y, Kaplan DL. pH‐dependent anticancer drug release from silk nanoparticles. Adv Healthc Mater. 2013;2(12):1606-11. https://doi.org/10.1002/adhm.201300034.
Li H, An X, Zhang D, Li Q, Zhang N, Yu H, et al. Transcriptomics analysis of the tumor-inhibitory pathways of 6-Thioguanine in MCF-7 cells via silencing DNMT1 activity. Onco Targets Ther. 2020;13:1211-23. https://doi.org/10.2147/OTT.S236543.
Li J, Wang Q, Xia G, Adilijiang N, Li Y, Hou Z, et al. Recent advances in targeted drug delivery strategy for enhancing oncotherapy. Pharmaceutics. 2023;15(9):2233. https://doi.org/10.3390/pharmaceutics15092233.
Wang X, Yang L, Chen Z, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58(2):97-110. https://doi.org/10.3322/CA.2007.0003.
Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, et al. Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis. 2023;14(9):587. https://doi.org/10.1038/s41419-023-06110-6.
Costa RLB, Han HS, Gradishar WJ. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Breast Cancer Res Treat. 2018;169(3):397-406. https://doi.org/10.1007/s10549-018-4697-y.
MacCuaig WM, Samykutty A, Foote J, Luo W, Filatenkov A, Li M, et al. Toxicity Assessment of Mesoporous Silica Nanoparticles upon Intravenous Injection in Mice: Implications for Drug Delivery. Pharmaceutics. 2022;14(5). https://doi.org/10.3390/pharmaceutics14050969.
Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther. 2023;8(1):160. https://doi.org/10.1038/s41392-023-01419-2.
Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties and regulatory issues. Front Chem. 2018;6:360. https://doi.org/10.3389/fchem.2018.00360.
Jaki T, Burdon A, Chen X, Mozgunov P, Zheng H, Baird R. Early phase clinical trials in oncology: Realising the potential of seamless designs. Eur J Cancer. 2023;189:112916. https://doi.org/10.1016/j.ejca.2023.05.005.
Oehler JB, Rajapaksha W, Albrecht H. Emerging Applications of Nanoparticles in the Diagnosis and Treatment of Breast Cancer. J Pers Med. 2024;14(7):723. https://doi.org/10.3390/jpm14070723.
Younis MA, Tawfeek HM, Abdellatif AA, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: Challenges, opportunities and keys. Adv Drug Deliv Rev. 2022;181:114083. https://doi.org/10.1016/j.addr.2021.114083.
Published
How to Cite
Issue
Section
Copyright (c) 2024 MOHAMMAD AMIN KABOLI, ALAA A. HASHIM, DHIYA ALTEMEMY, JAVAD SAFFARI-CHALESHTORI, MEHDI REZAEE, SAYEDEH AZIMEH HOSSEINI, PEGAH KHOSRAVIAN
This work is licensed under a Creative Commons Attribution 4.0 International License.