SILK FIBROIN-COATED MESOPOROUS SILICA NANOPARTICLES ENHANCE 6-THIOGUANINE DELIVERY AND CYTOTOXICITY IN BREAST CANCER CELLS
DOI:
https://doi.org/10.22159/ijap.2025v17i1.52882Keywords:
6-Thioguanine, Apoptosis, Breast adenocarcinoma, Cell cycle, Mesoporous silica nanoparticles (MSNs)Abstract
Objective: Breast cancer stands as the most prevalent form of cancer among women globally. Conventional chemotherapy, including the use of 6-Thioguanine (TG), often faces limitations such as poor drug solubility. In this research, we engineered a nanosystem consisting of Mesoporous Silica Nanoparticles (MSNs) loaded with TG and coated with Silk Fibroin (SF) to enhance the pharmacokinetic properties of this drug in targeting the MCF-7 breast cancer cell line.
Methods: In this study, we investigated the cytotoxicity of different formulations through MTT assay. Additionally, we analyze apoptosis and cell cycle phase distribution using flow cytometry. Furthermore, the absorption of MSN nanoparticles by MCF-7 cells was investigated using the fluorescent labeling technique by Dil fluorochrome.
Results: Our results represented the 48 h Half Maximal Inhibitory Concentration (IC50) values of free TG, MSNs loaded with TG (TG@MSNs) and SF-coated MSNs loaded with TG (SF/TG@MSN) were 16.69, 10.96 and 8.01 μM, respectively. Moreover, the percentage of total early and late apoptosis differed among the treatments. Specifically, cells treated with free TG, TG@MSN and SF/TG@MSN exhibited 13.49%, 76.05% and 84.99% apoptosis, respectively. The results also indicated that administering free TG and TG-loaded MSN nanoparticles to MCF-7 cells resulted in cell cycle arrest at the G2/M phase after 48 h of treatment.
Conclusion: Our study demonstrated that the SF/TG@MSN nanosystems effectively increased the cytotoxic effects of TG on the breast cancer cell line.
Downloads
References
Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Mini-han A. Breast cancer statistics, 2022. CA Cancer J Clin. 2022;72(6):524-41. doi: 10.3322/caac.21754, PMID 36190501.
Gajbhiye SA, Patil MP. Solid lipid nanoparticles: a review on different techniques and approaches to treat breast cancer. Int J Appl Pharm. 2023;15(2):52-62.
Khoramdad M, Solaymani Dodaran M, Kabir A, Ghahremanzadeh N, Hashemi EO, Fahimfar N. Breast cancer risk factors in Iranian women: a systematic review and meta-analysis of matched case control studies. Eur J Med Res. 2022;27(1):311. doi: 10.1186/s40001-022-00952-0, PMID 36575538.
Kazeminia M, Salari N, Hosseinian Far A, Akbari H, Bazrafshan MR, Mohammadi M. The prevalence of breast cancer in Iranian women: a systematic review and meta-analysis. Indian J Gynecol Oncolog. 2022;20(1):14. doi: 10.1007/s40944-022-00613-4.
Youn HJ, Han W. A review of the epidemiology of breast cancer in Asia: focus on risk factors. Asian Pac J Cancer Prev. 2020;21(4):867-80. doi: 10.31557/APJCP.2020.21.4.867, PMID 32334446.
Cohen SY, Stoll CR, Anandarajah A, Doering M, Colditz GA. Modi-fiable risk factors in women at high risk of breast cancer: a systematic review. Breast Cancer Res. 2023;25(1):45. doi: 10.1186/s13058-023-01636-1, PMID 37095519.
Yang KN, Zhang CQ, Wang W, Wang PC, Zhou JP, Liang XJ. pH-responsive mesoporous silica nanoparticles employed in con-trolled drug delivery systems for cancer treatment. Cancer Biol Med. 2014;11(1):34-43. doi: 10.7497/j.issn.2095-3941.2014.01.003, PMID 24738037.
HO BN, Pfeffer CM, Singh AT. Update on nanotechnology-based drug delivery systems in cancer treatment. Anticancer Res. 2017;37(11):5975-81. doi: 10.21873/anticanres.12044, PMID 29061776.
Truong NP, Quinn JF, Whittaker MR, Davis TP. Polymeric filomi-celles and nanoworms: two decades of synthesis and application. Polym Chem. 2016;7(26):4295-312. doi: 10.1039/C6PY00639F.
Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA. Mesoporous silica nanoparticles for therapeu-tic/diagnostic applications. Biomed Pharmacother. 2019 Jan;109:1100-11. doi: 10.1016/j.biopha.2018.10.167, PMID 30551360.
Sharmiladevi S, Priya AS, Sujitha MV. Synthesis of mesoporous silica nanopaticles and drug loading for g-positive and g-negative bacteria. Int J Pharm Pharm Sci. 2016;8:196-201.
LI Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012;41(7):2590-605. doi: 10.1039/c1cs15246g, PMID 22216418.
Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig. 2015;5(3):124-33. doi: 10.4103/2230-973X.160844, PMID 26258053.
Meijer B, Mulder CJ, Peters GJ, Van Bodegraven AA, DE Boer NK. Efficacy of thioguanine treatment in inflammatory bowel disease: a systematic review. World J Gastroenterol. 2016;22(40):9012-21. doi: 10.3748/wjg.v22.i40.9012, PMID 27833392.
Hashim AA, Abdul Reda Hussein U, Bahir H, Amir AA, Muham-mad FA, Ahjel S. A DFT approach towards therapeutic potential of novel borospherene as targeted drug delivery system for isoniazid drug. Mol Phys. 2024;122(17):e2311786. doi: 10.1080/00268976.2024.2311786.
Zhang D, An X, LI Q, Man X, Chu M, LI H. Thioguanine induces apoptosis in triple-negative breast cancer by regulating PI3K–AKT pathway. Front Oncol. 2020;10:524922. doi: 10.3389/fonc.2020.524922, PMID 33194583.
Bayoumy AB, Simsek M, Seinen ML, Mulder CJ, Ansari A, Peters GJ. The continuous rediscovery and the benefit-risk ratio of thioguanine a comprehensive review. Expert Opin Drug Metab Toxicol. 2020;16(2):111-23. doi: 10.1080/17425255.2020.1719996, PMID 32090622.
Yamane K, Taylor K, Kinsella TJ. Mismatch repair mediated G2/M arrest by 6-thioguanine involves the ATR-Chk1 pathway. Biochem Biophys Res Commun. 2004;318(1):297-302. doi: 10.1016/j.bbrc.2004.04.030, PMID 15110787.
Cheng CP, Liu ST, Chiu YL, Huang SM, HO CL. The inhibitory effects of 6-thioguanine and 6-mercaptopurine on the USP2a target fatty acid synthase in human submaxillary carcinoma cells. Front Oncol. 2021;11:749661. doi: 10.3389/fonc.2021.749661, PMID 34956872.
Motasadizadeh H, Fatahi Y, Molla KV, Amanzadeh A, Farokhi M. New drug delivery systems based on polymeric silk fibroin. New Cell Mol Biotechnol J. 2019;9(34):9-22.
Panda N, Bissoyi A, Pramanik K, Biswas A. Development of novel electrospun nanofibrous scaffold from p. ricini and a. mylitta silk fibroin blend with improved surface and biological properties. Mater Sci Eng C Mater Biol Appl. 2015 Mar;48:521-32. doi: 10.1016/j.msec.2014.12.010, PMID 25579953.
Karimi Maleh H, Fallah Shojaei A, Karimi F, Tabatabaeian K, Shakeri S. Au nanoparticle loaded with 6-thioguanine anticancer drug as a new strategy for drug delivery. J Nanostruct. 2018;8(4):217-424. doi: 10.22052/JNS.2018.04.012.
Rajashekaraiah R, Kumar PR, Prakash N, Rao GS, Devi VR, Metta M. Anticancer efficacy of 6-thioguanine loaded chitosan nanoparticles with or without curcumin. Int J Biol Macromol. 2020 Apr 1;148:704-14. doi: 10.1016/j.ijbiomac.2020.01.117, PMID 31954127.
Cheema SK, Gobin AS, Rhea R, Lopez Berestein G, Newman RA, Mathur AB. Silk fibroin mediated delivery of liposomal emodin to breast cancer cells. Int J Pharm. 2007;341(1-2):221-9. doi: 10.1016/j.ijpharm.2007.03.043, PMID 17499461.
Gupta V, Aseh A, Rios CN, Aggarwal BB, Mathur AB. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomedicine. 2009;4:115-22. doi: 10.2147/ijn.s5581, PMID 19516890.
Mottaghitalab F, Farokhi M, Shokrgozar MA, Atyabi F, Hosseinkhani H. Silk fibroin nanoparticle as a novel drug delivery system. J Control Release. 2015;206:161-76. doi: 10.1016/j.jconrel.2015.03.020, PMID 25797561.
Ahmed A, Sarwar S, HU Y, Munir MU, Nisar MF, Ikram F. Surface modified polymeric nanoparticles for drug delivery to cancer cells. Expert Opin Drug Deliv. 2021;18(1):1-24. doi: 10.1080/17425247.2020.1822321, PMID 32905714.
Altememy D, Khoobi M, Javar HA, Alsamarrai S, Khosravian P. Synthesis and characterization of silk fibroin coated mesoporous silica nanoparticles for tioguanine targeting to leukemia. Int J Pharmacol Res. 2020;12(2):SP2.145. doi: 10.31838/ijpr/2020.
Comsa S, Cimpean AM, Raica M. The story of MCF-7 breast can-cer cell line: 40 years of experience in research. Anticancer Res. 2015;35(6):3147-54. PMID 26026074.
Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13(4):215. doi: 10.1186/bcr2889, PMID 21884641.
Stockert JC, Horobin RW, Colombo LL, Blazquez Castro A. Tetrazolium salts and formazan products in cell biology: viability assessment fluorescence imaging and labeling perspectives. Acta Histochem. 2018;120(3):159-67. doi: 10.1016/j.acthis.2018.02.005, PMID 29496266.
Adan A, Kiraz Y, Baran Y. Cell proliferation and cytotoxicity assays. Curr Pharm Biotechnol. 2016;17(14):1213-21. doi: 10.2174/1389201017666160808160513, PMID 27604355.
Jiang L, Tixeira R, Caruso S, Atkin Smith GK, Baxter AA, Paone S. Monitoring the progression of cell death and the disassembly of dying cells by flow cytometry. Nat Protoc. 2016;11(4):655-63. doi: 10.1038/nprot.2016.028, PMID 26938116.
Crowley LC, Marfell BJ, Scott AP, Waterhouse NJ. Quantitation of apoptosis and necrosis by annexin v binding propidium iodide uptake and flow cytometry. Cold Spring Harb Protoc. 2016;2016(11):prot087288. doi: 10.1101/pdb.prot087288, PMID 27803250.
Hashim AA, Rajab NA, Tekie FS, Dinarvand R, Akrami M. Investigations factors affecting formulation of anastrozole as nanostructured lipid carrier. International Journal of Pharma-ceutical Research. 2020;12(3):937-45. doi: 10.31838/ijpr/2020.
Yamane K, Taylor K, Kinsella TJ. Mismatch repair mediated G2/M arrest by 6-thioguanine involves the ATR–Chk1 pathway. Biochem Biophys Res Commun. 2004;318(1):297-302. doi: 10.1016/j.bbrc.2004.04.030, PMID 15110787.
Trudeau M, Charbonneau F, Gelmon K, Laing K, Latreille J, Mackey J. Selection of adjuvant chemotherapy for treatment of node positive breast cancer. Lancet Oncol. 2005;6(11):886-98. doi: 10.1016/S1470-2045(05)70424-1, PMID 16257797.
Vallet Regi M, Colilla M, Izquierdo Barba I, Manzano M. Mesoporous silica nanoparticles for drug delivery: current in-sights. Molecules. 2017;23(1):47. doi: 10.3390/molecules23010047, PMID 29295564.
Fritze A, Hens F, Kimpfler A, Schubert R, Peschka Suss R. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta. 2006;1758(10):1633-40. doi: 10.1016/j.bbamem.2006.05.028, PMID 16887094.
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticle-based based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1-18. doi: 10.1016/j.colsurfb.2009.09.001, PMID 19782542.
Jafarizad A, Aghanejad A, Sevim M, Metin O, Barar J, Omidi Y. Gold nanoparticles and reduced graphene oxide gold nanoparti-cle composite materials as covalent drug delivery systems for breast cancer treatment. Chemistry Select. 2017;2(23):6663-72. doi: 10.1002/slct.201701178.
Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano. 2013;7(2):994-1005. doi: 10.1021/nn3044066, PMID 23289892.
Bhavsar DB, Patel V, Sawant KK. Design and characterization of dual responsive mesoporous silica nanoparticles for breast cancer targeted therapy. Eur J Pharm Sci. 2020;152:105428. doi: 10.1016/j.ejps.2020.105428, PMID 32553643.
Aghevlian S, Yousefi R, Faghihi R, Abbaspour A, Niazi A, Jaberi-pour M. The improvement of anti-proliferation activity against breast cancer cell line of thioguanine by gold nanoparticles. Med Chem Res. 2013;22(1):303-11. doi: 10.1007/s00044-012-0030-1.
Deka SR, Singh R, Verma P, Kumar P. Design fabrication and evaluation of amphiphilic hyaluronic acid conjugates as efficient carriers of 6‐thioguanine for in vitro anticancer drug delivery applications. Polym Int. 2023;72(2):205-16. doi: 10.1002/pi.6460.
LI H, An X, Zhang D, LI Q, Zhang N, YU H. Transcriptomics analy-sis of the tumor-inhibitory pathways of 6-thioguanine in MCF-7 cells via silencing DNMT1 activity. Onco Targets Ther. 2020;13:1211-23. doi: 10.2147/OTT.S236543, PMID 32103989.
Zhang YQ, Shen WD, Xiang RL, Zhuge LJ, Gao WJ, Wang WB. For-mation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanopart Res. 2007;9(5):885-900. doi: 10.1007/s11051-006-9162-x.
Seib FP, Jones GT, Rnjak Kovacina J, Lin Y, Kaplan DL. PH‐dependent anticancer drug release from silk nanoparticles. Adv Healthc Mater. 2013;2(12):1606-11. doi: 10.1002/adhm.201300034, PMID 23625825.
LI H, AN X, Zhang D, LI Q, Zhang N, YU H. Transcriptomics analy-sis of the tumor inhibitory pathways of 6-thioguanine in MCF-7 cells via silencing DNMT1 activity. Onco Targets Ther. 2020;13:1211-23. doi: 10.2147/OTT.S236543, PMID 32103989.
LI J, Wang Q, Xia G, Adilijiang N, LI Y, Hou Z. Recent advances in targeted drug delivery strategy for enhancing oncotherapy. Pharmaceutics. 2023;15(9):2233. doi: 10.3390/pharmaceutics15092233, PMID 37765202.
Wang X, Yang L, Chen ZG, Shin DM. Application of nanotechnol-ogy in cancer therapy and imaging. CA Cancer J Clin. 2008;58(2):97-110. doi: 10.3322/CA.2007.0003, PMID 18227410.
Zhao Y, Shen M, WU L, Yang H, Yao Y, Yang Q. Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis. 2023;14(9):587. doi: 10.1038/s41419-023-06110-6, PMID 37666813.
Costa RL, Han HS, Gradishar WJ. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Breast Cancer Res Treat. 2018;169(3):397-406. doi: 10.1007/s10549-018-4697-y, PMID 29417298.
Mac Cuaig WM, Samykutty A, Foote J, Luo W, Filatenkov A, LI M. Toxicity assessment of mesoporous silica nanoparticles upon intravenous injection in mice: implications for drug delivery. Pharmaceutics. 2022 Apr 30;14(5):969. doi: 10.3390/pharmaceutics14050969, PMID 35631554.
Liu Y, WU W, Cai C, Zhang H, Shen H, Han Y. Patient derived xenograft models in cancer therapy: technologies and applica-tions. Signal Transduct Target Ther. 2023;8(1):160. doi: 10.1038/s41392-023-01419-2, PMID 37045827.
Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles properties and regulatory issues. Front Chem. 2018;6:360. doi: 10.3389/fchem.2018.00360, PMID 30177965.
Jaki T, Burdon A, Chen X, Mozgunov P, Zheng H, Baird R. Early phase clinical trials in oncology: realising the potential of seam-less designs. Eur J Cancer. 2023;189:112916. doi: 10.1016/j.ejca.2023.05.005, PMID 37301716.
Oehler JB, Rajapaksha W, Albrecht H. Emerging applications of nanoparticles in the diagnosis and treatment of breast cancer. J Pers Med. 2024;14(7):723. doi: 10.3390/jpm14070723, PMID 39063977.
Younis MA, Tawfeek HM, Abdellatif AA, Abdel Aleem JA, Hara-shima H. Clinical translation of nanomedicines: challenges opportunities and keys. Adv Drug Deliv Rev. 2022 Feb;181:114083. doi: 10.1016/j.addr.2021.114083, PMID 34929251.
Published
How to Cite
Issue
Section
Copyright (c) 2025 MOHAMMAD AMIN KABOLI, ALAA A. HASHIM, DHIYA ALTEMEMY, JAVAD SAFFARI-CHALESHTORI, MEHDI REZAEE, SAYEDEH AZIMEH HOSSEINI, PEGAH KHOSRAVIAN
This work is licensed under a Creative Commons Attribution 4.0 International License.