ANTIOXIDANT ACTIVITY AND PHENOLIC CONTENTS OF SEVEN BROWN SEAWEED FROM DJIBOUTI COAST

Authors

  • ABDIRAHMAN ELMI FOURREH Medicinal Research Institute, Centre d’Etudes et de Recherche de Djibouti, Route de L’aéroport, BP: 486 Djibouti, Djibouti
  • FATOUMA MOHAMED ABDOUL-LATIF Medicinal Research Institute, Centre d’Etudes et de Recherche de Djibouti, Route de L’aéroport, BP: 486 Djibouti, Djibouti
  • MOUSTAPHA NOUR IBRAHIM Medicinal Research Institute, Centre d’Etudes et de Recherche de Djibouti, Route de L’aéroport, BP: 486 Djibouti, Djibouti
  • ALI MERITO ALI Medicinal Research Institute, Centre d’Etudes et de Recherche de Djibouti, Route de L’aéroport, BP: 486 Djibouti, Djibouti

DOI:

https://doi.org/10.22159/ijcpr.2019v11i3.34095

Keywords:

Brown seaweed, Antioxidant activity, Polyphenols, Djibouti

Abstract

Objective: This study focuses on the antioxidant potential of Djibouti brown seaweed and their phenolic contents.

Methods: We evaluated the antioxidant potential by DPPH method (1,1-diphenyl-2-picrylhydrazyl) and their phenolic contents of seven Djibouti seaweed: Cytoseira myrica, Padina pavonica, Sargassum fluitans, Sargassum ilifolium, Sargassum sp, Turbinaria triquetra and Turbinaria turbinata. Also, we searched the secondary metabolites of these seaweeds.

Results: We obtain a higher antioxidant activity at 60,7±0,9 % and a higher phenolic content at 199,01±0,5 μg equivalent phloroglucinol (PGE)/g dry matter for Padina pavonica. A good linear correlation (R2 = 0,898) is observed between the antioxidant activity and the phenolic content of the seaweed studied. Also, two Padina pavonica collected in two different locations have different biochemical concentrations and antioxidant activity, suggesting the influence of the marine environment on the biosynthesis of secondary metabolites and the biological activities of seaweed.

The present study shows the presence of tannins, saponosides, flavonoids and steroid-terpenes.

Conclusion: The species studied show interesting antioxidant activities and can be consumed to prevent oxidative stress.

Downloads

Download data is not yet available.

References

1. Beaudeux JL, Delattre J, Therond P, Bonnefont Rousselot D, Legrand A, Peynet J. Le stress oxydant, composante physiopathologique de l’athérosclérose. Immunol Anal Biol Spec 2006;21:144-50.
2. Sadi H, Zebboudj AE. Pouvoir antioxydant de quelques algues marine. These 2010. p. 1-98.
3. FAO; 2010. www.FAO.org./docREP/013/i1820e.01. www. FAO.org./docREP/013/i1820e.01. [Last accessed on 10 Jan 2019].
4. Al-Judaibi A. Antibacterial effects of extracts of two types of red sea algae. J Biosci Med 2014;2:74–82.
5. Alka A, Tyagi N, Kumar SS. Pharmacological aspects of Turbinaria. Int J Res Dev Pharm Life Sci 2017;6:2648–53.
6. Chbani A, Mawlawi H, Etahiri S. Activité antibactérienne des extraits d’une algue brune Padina pavonica de la côte méditerranéenne au Liban Phytotherapie 2011;9:283–6.
7. Conover JT, McN Sieburth J. Effect of sargassum distribution on its epibiota and antibacterial activity. Bot Marina 1964;6:147-57.
8. Naja K, Mawlawi H, Chbani Asma. Antioxidant and antifungal activity of padina pavonica and sargassum vulgae from the lebanese mediterranean coast. Adv Envirn Biol 2012;6:42–8.
9. Mayer A, Rodriguez A, Taglialatela Scafati O, Fusetani N. Marine pharmacology in 2012–2013: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 2017;15:273.
10. Simpi C, Nagathan C, Karajgi S, Kalyane N. Evaluation of marine brown algae sargassum ilicifolium extract for analgesic and anti-inflammatory activity. Pharmacogn Res 2013;5:146.
11. Zandi K, Fouladvand M, Pakdel P, Sartavi K. Evaluation of in vitro antiviral activity of a brown alga (Cystoseira myrica) from the persian gulf against herpes simplex virus type 1. Afr J Biotechnol 2007;6:2511-4.
12. Ayyad SEN, Abdel Halim OB, Shier WT, Hoye TR. Cytotoxic hydroazulene diterpenes from the brown alga cystoseira myrica. Z Fur Naturforschung C 2003;58:33-8.
13. OO Oyesiku, A Egunyomi. Identification and chemical studies of pelagic masses of Sargassum natans (Linnaeus) Gaillon and S. fluitans (Borgessen) Borgesen (brown algae), found offshore in Ondo State, Nigeria. Afr J Biotechnol 2014;13:1188–93.
14. Hamdy AHA, Aboutabl EA, Sameer S, Hussein AA, Diaz Marrero, AR Darias J, et al. 3-Keto-22-epi-28-nor-cathasterone, a brassinosteroid-related metabolite from cystoseira myrica. Steroids 2009;74:927–30.
15. Smith LL, Dhart AK, Gilchrist JL, Yong YL. Sterols of the brown alga Sargassum fluitans. Phytochemistry 1973;12:2727–32.
16. Boettcher AA, Targett NM. Role of polyphenolic molecular size in the reduction of assimilation efficiency in xiphister mucosus. Ecology 1993;74:891-903.
17. Fourest E, Volesky B. Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ Sci Technol 1996;30:277–82.
18. Freile Pelegrin Y, Robledo D, Chan Bacab MJ, Ortega Morales BO. Antileishmanial properties of tropical marine algae extracts. Fitoterapia 2008;79:374–7.
19. Hegazi MM, Perez Ruzafa A, Almela L, Mar??a Emilia Candela. Separation and identification of chlorophylls and carotenoids from caulerpa prolifera, Jania rubens and padina pavonica by reversed-phase high-performance liquid chromatography. J Chromatogr A 1998;829:153-9.
20. CIULEI I. Methodology of analysis of the vegetable drug. Practical manual on industrial utilization of medicinal and aromatic plants. Bucarest 1982. p. 1–62.
21. Van Alstyne KL. Comparison of three methods for quantifying brown algal polyphenolic compounds. J Chem Ecol 1995;21:45–58.
22. Harrison PG, Durance C. Seasonal variation in phenolic content of eelgrass shoots. Aquat Bot 1989;35:409–13.
23. Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds†. J Agric Food Chem 2000;48:3597–604.
24. Xiao Jun Y, Guo Ming F, Qing Xiang L. Studies on free radical scavenging activity in Chinese seaweeds part I. screening results. Chin J Oceanol Limnol 1999;17:240.
25. Ismail A, Hong TS. Antioxidant activity of selected commercial seaweeds. Mal J Nutr 2002;8:167–77.
26. Mebkhouti F. Etude phytochimique et activites biologiques de l’extrait brut et ses fractions de l’algue brune cladosteplius hirisutus, recoltée sur la cote ouest algerienne (plage de Madrid) (PhD Thesis); 2014.
27. Chattopadhyay N, Ghosh T, Sinha S, Chattopadhyay K, Karmakar P, Ray B. Polysaccharides from turbinaria conoides: structural features and antioxidant capacity. Food Chem 2010;118:823-9.
28. Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 1992;40:945–8.
29. Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem 2006;97:654–60.
30. Vissers AM, Caligiani A, Sforza S, Vincken JP, Gruppen H. Phlorotannin composition of Laminaria digitata: phlorotannin composition of laminaria digitata. Phytochem Anal 2017;28:487–95.
31. Bruneton jean. Pharmacognosie, phytochimie, plantes médicinales. (5e ed.) Lavoisier; 2016.

Published

15-05-2019

How to Cite

FOURREH, A. E., F. M. ABDOUL-LATIF, M. N. IBRAHIM, and A. M. ALI. “ANTIOXIDANT ACTIVITY AND PHENOLIC CONTENTS OF SEVEN BROWN SEAWEED FROM DJIBOUTI COAST”. International Journal of Current Pharmaceutical Research, vol. 11, no. 3, May 2019, pp. 42-44, doi:10.22159/ijcpr.2019v11i3.34095.

Issue

Section

Original Article(s)