A REVIEW ON LACTOFERRIN PRINCIPLE CONSTITUENT OF BOVINE COLOSTRUM: IN COVID19

Authors

  • AISHWARYA S. PATIL VDF School of Pharmacy, Latur, (413512), Maharashtra
  • RANI PURI VDF School of Pharmacy, Latur, (413512), Maharashtra
  • B. S. WAKURE VDF School of Pharmacy, Latur, (413512), Maharashtra

DOI:

https://doi.org/10.22159/ijcpr.2022v14i3.1984

Keywords:

Bovine colostrum, Lactoferrin, SARS-COVID 19, Antiviral, Antibacterial

Abstract

The Covid sickness (COVID19) pandemic is quickly expanding across the world. There is no legitimate therapy for this illness except for by supporting our resistance we can battle with this infection so to battle Coronavirus contamination the famous dietary enhancement bovine colostrums having bunches of utilization to battle against viral disease. It go about an immunomodulatory, anti-inflammatory, Antibacterial effect. The most significant part found in colostrum is lactoferrin which is a 80 KDA glycoprotein containing around 703 amino corrosive and having its capacity to tie with iron by restricting with iron, lactoferrin retain iron from the climate and forestalls viral heap of pathogens. The Covid didn't get authoritative therapy because of viral transformation; this review is accommodating for helping the invulnerable framework in coronavirus patient.

Downloads

Download data is not yet available.

References

Wang MW, Zhou MY, Ji GH, Ye L, Cheng YR, Feng ZH, Chen J. Mask crisis during the COVID-19 outbreak. Eur Rev Med Pharmacol Sci. 2020 Mar 1;24(6):3397-9. doi: 10.26355/eurrev_202003_20707, PMID 32271457.

Saigal S, Gupta S, Sudhindran S, Goyal N, Rastogi A, Jacob M, Raja K, Ramamurthy A, Asthana S, Dhiman RK, Singh B, Perumalla R, Malik A, Shanmugham N, Soin AS. Liver transplantation and COVID-19 (coronavirus) infection: guidelines of the liver transplant Society of India (LTSI). Hepatol Int. 2020 Apr 8;14(4):429-31. doi: 10.1007/s12072-020-10041-1, PMID 32270388.

Rasmussen SA, Smulian JC, Lednicky JA, Wen TS, Jamieson DJ. Coronavirus Disease 2019 (COVID-19) and pregnancy: what obstetricians need to know. Am J Obstet Gynecol. 2020 Feb 24;222(5):415-26. doi: 10.1016/j.ajog.2020.02.017, PMID 32105680.

Godhia ML, Patel N. Colostrum-its composition, benefits as a nutraceutical: a review. Curr Res Nutr Food Sci. 2013;1(1):37-47. doi: 10.12944/CRNFSJ.1.1.04.

Marnila P, Korhonen H. Milk: colostrum. Encyclopedia of Dairy Sciences. 2011;2:591-7.

Abd El-Fattah AM, Abd Rabo FHR, EL-Dieb SM, El-Kashef HAS. Changes in the composition of colostrum of Egyptian buffaloes and Holstein cows. BMC Vet Res. 2012;8:19. doi: 10.1186/1746-6148-8-19, PMID 22390895.

Bagwe S, Tharappel LJP, Kaur G, Buttar HS. Bovine colostrum: an emerging nutraceutical. J Complement Integr Med. 2015;12(3):175-85. doi: 10.1515/jcim-2014-0039, PMID 25781716.

Buttar HS, Bagwe SM, Bhullar SK, Kaur G. Health benefits of bovine colostrum in children and adults. Res Rev, (Watson), Dairy in Human Health and Disease Across the Lifespan. 2017. p. 3–20.

Ramesh Menon P, Lodha R, Kabra SK. Bovine colostrum in pediatric respiratory diseases: A systematic review. Indian J Pediatr. 2010;77(1):108-9. doi: 10.1007/s12098-009-0257-0, PMID 19936658.

Ramezanalizadeh F, Aliasghari A, Khorasgani MR, Khoroushi M, Tahmourethpour A, Jabbari AR. Evaluation of hyperimmune colostrum production in bovine against cariogenic streptococci and its impact on growth and bacterial biofilm formation. J Dent Med. 2017 Mar 1;29(4):237-46.

Legrand D, Mazurier J. A critical review of the roles of host lactoferrin in immunity. Biometals. 2010 Jun 1;23(3):365-76. doi: 10.1007/s10534-010-9297-1, PMID 20143251.

Gifford JL, Hunter HN, Vogel HJ. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci. 2005 Nov 1;62(22):2588-98. doi: 10.1007/s00018-005-5373-z, PMID 16261252.

Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-74. doi: 10.1038/s41577-020-0311-8, PMID 32346093.

Ge H, Wang X, Yuan X, Xiao G, Wang C, Deng T, Yuan Q, Xiao X. The epidemiology and clinical information about COVID-19. Eur J Clin Microbiol Infect Dis. 2020;39(6):1011-9. doi: 10.1007/s10096-020-03874-z, PMID 32291542.

Carvalho CAM, Casseb SMM, Gonçalves RB, Silva EVP, Gomes AMO, Vasconcelos PFC. Bovine lactoferrin activity against chikungunya and zika viruses. J Gen Virol. 2017;98(7):1749-54. doi: 10.1099/jgv.0.000849, PMID 28699858.

Yadav R, Angolkar T, Kaur G, Buttar HS. Antibacterial and anti-inflammatory properties of bovine colostrum. Recent Pat Inflamm Allergy Drug Discov. 2016;10(1):49-53. doi: 10.2174/1872214810666160219163118, PMID 26899853.

Grief SN. Upper respiratory infections. Prim Care. 2013;40(3):757-70. doi: 10.1016/j.pop.2013.06.004, PMID 23958368.

Xu ML, Kim HJ, Wi GR, Kim HJ. The effect of dietary bovine colostrum on respiratory syncytial virus infection and immune responses following the infection in the mouse. J Microbiol. 2015;53(9):661-6. doi: 10.1007/s12275-015-5353-4, PMID 26310306.

Rossey I, Sedeyn K, De Baets S, Schepens B, Saelens X. CD8+T cell immunity against human respiratory syncytial virus. Vaccine. 2014;32(46):6130-7. doi: 10.1016/j.vaccine.2014.08.063, PMID 25223272.

Saad K, Abo-Elela MGM, El-Baseer KAA, Ahmed AE, Ahmad FA, Tawfeek MSK, El-Houfey A, About Khair MD, Abdel-Salam AM, Abo-elgheit A, Qubaisy H, Ali A M, Abdel-Mawgoud E. Effects of bovine colostrum on recurrent respiratory tract infections and diarrhea in children. Medicine. 2016;95:1-5.

Nigro A, Nicastro A, Trodella R. Retrospective observational study to investigate sinerga, a multifactorial nutritional product, and bacterial extracts in the prevention of recurrent respiratory infections in children. Int J Immunopathol Pharmacol. 2014;27(3):455-60. doi: 10.1177/039463201402700318, PMID 25280039.

Patel K, Rana R. Pedimune in recurrent respiratory infection and diarrhea-the Indian experience-the pride study. Indian J Pediatr. 2006;73(7):585-91. doi: 10.1007/BF02759923, PMID 16877852.

Fung SY, Yuen KS, Ye ZW, Chan CP, Jin DY. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defense: lessons from other pathogenic viruses. Emerg Microbes Infect. 2020;9(1):558-70. doi: 10.1080/22221751.2020.1736644, PMID 32172672.

Brinkworth GD, Buckley JD. Concentrated bovine colostrum protein supplementation reduces the incidence of self-reported symptoms of upper respiratory tract infection in adult males. Eur J Nutr. 2003;42(4):228-32. doi: 10.1007/s00394-003-0410-x, PMID 12923655.

Jones AW, Thatcher R, Mur LAJ, Cameron SJS, Beecroft M, Davison G. Exploring the mechanisms behind the effects of chronic bovine colostrum supplementation on risk of upper respiratory tract infection. Int J Exer Sci. 2013;10(1), ISSN 1939-795X.

Ahmad S, Anjum FM, Huma N, Sameen A, Zahoor T. Composition and Physico-chemical characteristics of buffalo milk with particular emphasis on lipids, proteins, minerals, enzymes and vitamins. J Anim Plant Sci. 2013;23:62-74.

Barrington GM, Besser TE, Davis WC, Gay CC, Reeves JJ, McFadden TB. Expression of immunoglobulin G1 receptors by bovine mammary epithelial cells and mammary leukocytes. J Dairy Sci. 1997;80(1):86-93. doi: 10.3168/jds.S0022-0302(97)75915-0. PMID 9120099.

Korhonen H, Pihlanto A. Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum. Curr Pharm Des. 2007;13(8):829-43. doi: 10.2174/138161207780363112, PMID 17430184.

Kramski M, Lichtfuss GF, Navis M, Isitman G, Wren L, Rawlin G, Center RJ, Jaworowski A, Kent SJ, Purcell DF. Anti-HIV-1 antibody-dependent cellular cytotoxicity mediated by hyperimmune bovine colostrum IgG. Eur J Immunol. 2012;42(10):2771-81. doi: 10.1002/eji.201242469, PMID 22730083.

Korhonen H, Marnila P, Gill HS. Milk immunoglobulins and complement factors. Br J Nutr. 2000;84Suppl 1:S75-80. doi: 10.1017/S0007114500002282, PMID 11242450.

Baumrucker CR, Bruckmaier RM. Colostrogenesis: IgG1 transcytosis mechanisms. J Mammary Gland Biol Neoplasia. 2014;19(1):103-17. doi: 10.1007/s10911-013-9313-5, PMID 24474529.

Sasaki M, Davis CL, Larson BL. Production and turnover of IgG1 and IgG2 immunoglobulins in the bovine around parturition. J Dairy Sci. 1976;59(12):2046-55. doi: 10.3168/jds.S0022-0302(76)84486-4. PMID 1010882.

Virtala A-MK, Grohn YT, Mechor GD, Erb HN. The effect of maternally derived immunoglobulin G on the risk of respiratory disease in heifers during the first 3 months of life. Prev Vet Med. 1999;39(1):25-37. doi: 10.1016/S0167-5877(98)00140-8.

Beam AL, Lombard JE, Kopral CA, Garber LP, Winter AL, Hicks JA, Schlater JL. Prevalence of failure of passive transfer of immunity in newborn heifer calves and associated management practices on US dairy operations. J Dairy Sci. 2009;92(8):3973-80. doi: 10.3168/jds.2009-2225, PMID 19620681.

McGuirk SM, Collins M. Managing the production, storage, and delivery of colostrum. Vet Clin North Am Food Anim Pract. 2004;20(3):593-603. doi: 10.1016/j.cvfa.2004.06.005. PMID 15471626.

Fox PF, Kelly AL. Indigenous enzymes in milk: overview and historical aspects-Part 1. Int Dairy J. 2006;16(6):500-16. doi: 10.1016/j.idairyj.2005.09.013. idairyj.2005.09.013.

Hahn R, Schulz PM, Schaupp C, Jungbauer A. Bovine whey fractionation based on cation-exchange chromatography. J Chromatogr A. 1998;795(2):277-87. doi: 10.1016/S0021-9673(97)01030-3, PMID 9528103.

Farkye NY, Bansal N. Enzymes indigenous to milk other enzymes. In: Fuquay JW, Fox PJ, McSweeney PLH. editors. Encyclopedia of dairy sciences. Amsterdam: Elsevier; 2011. p. 327-34.

Shakeel-ur-Rehman, Farkye FNY. Enzy-mes indigenous to milk lactoperoxidase. In: Roginski H. editor. Encyclopedia of dairy Scien. Elsevier; 2002. p. 938-41.

Wolfson LM, Sumner SS. Antibacterial activity of the lactoperoxidase system: a review. J Food Prot. 1993;56(10):887-92. doi: 10.4315/0362-028X-56.10.887, PMID 31113161.

Belding ME, Klebanoff SJ, Ray CG. Peroxidase-mediated virucidal systems. Science. 1970;167(3915):195-6. doi: 10.1126/science.167.3915.195, PMID 4311694.

Tanaka T, Xuan X, Fujisaki K, Shimazaki K. Expression and characterization of bovine milk antimicrobial proteins lactoperoxidase and lactoferrin by vaccinia virus. In: Roy PK. editors. Insight and control of infectious disease in global scenario. IntechOpen; 2012. p. 127-33.

Yamauchi K, Tomita M, Giehl TJ, Ellison RT. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect Immun. 1993;61(2):719-28. doi: 10.1128/IAI.61.2.719-728.1993, PMID 8423097.

Nakamura T, Kawase H, Kimura K, Watanabe Y, Ohtani M, Arai I, Urashima T. Concentrations of sialyloligosaccharides in bovine colostrum and milk during the prepartum and early lactation. J Dairy Sci. 2003;86(4):1315-20. doi: 10.3168/jds.S0022-0302(03)73715-1. PMID 12741556.

Tao N, DePeters EJ, Freeman S, German JB, Grimm R, Lebrilla CB. Bovine milk glycome. J Dairy Sci. 2008;91(10):3768-78. doi: 10.3168/jds.2008-1305, PMID 18832198.

Tao N, DePeters EJ, German JB, Grimm R, Lebrilla CB. Variations in bovine milk oligosaccharides during early and middle lactation stages analyzed by high-performance liquid chromatography-chip/mass spectrometry. J Dairy Sci. 2009;92(7):2991-3001. doi: 10.3168/jds.2008-1642, PMID 19528576.

Barile D, Marotta M, Chu C, Mehra R, Grimm R, Lebrilla CB, German JB. Neutral and acidic oligosaccharides in Holstein-Friesian colostrum during the first 3 days of lactation measured by high-performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. J Dairy Sci. 2010;93(9):3940-9. doi: 10.3168/jds.2010-3156, PMID 20723667.

Ninonuevo MR, Park Y, Yin H, Zhang J, Ward RE, Clowers BH, German JB, Freeman SL, Killeen K, Grimm R, Lebrilla CB. A strategy for annotating the human milk glycome. J Agric Food Chem. 2006;54(20):7471-80. doi: 10.1021/jf0615810, PMID 17002410.

Martin-Sosa S, Martin MJ, Garcia Pardo LA, Hueso P. Sialyloligosaccharides in human and bovine milk and in infant formulas: variations with the progression of lactation. J Dairy Sci. 2003;86(1):52-9. doi: 10.3168/jds.S0022-0302(03)73583-8. S0022-0302(03)73583-8. PMID 12613848.

Urashima T, Kitaoka M, Asakuma S, Messer M. Milk oligosaccharides. In: McSweeney P, Fox PF, Esitors. Advanced dairy chemistry. New York: Springer New York; 2009. p. 295-349.

McJarrow P, van Amelsfort-Schoonbeek J. Bovine sialyl oligosaccharides: seasonal variations in their concentrations in milk, and a comparison of the colostrums of jersey and friesian cows. Int Dairy J. 2004;14(7):571-9. doi: 10.1016/j.idairyj.2003.11.006.

Karav S, Bell JM, Le Parc A Le, Liu Y, Mills DA, Block DE, Barile D. Characterizing the release of bioactive N-glycans from dairy products by a novel endo-β-N-acetylglucosaminidase. Biotechnol Prog. 2015;31(5):1331-9. doi: 10.1002/btpr.2135, PMID 26097235.

Ten Bruggencate SJ, Bovee Oudenhoven IM, Feitsma AL, van Hoffen E, Schoterman MH. Functional role and mechanisms of sialyl lactose and other sialylated milk oligosaccharides. Nutr Rev. 2014;72(6):377-89. doi: 10.1111/nure.12106, PMID 24828428.

Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418-23. doi: 10.1002/jmv.25681, PMID 31967327.

Legrand D, Elass E, Carpentier M, Mazurier J. Interactions of lactoferrin with cells involved in immune function. Biochem Cell Biol. 2006;84(3):282-90. doi: 10. 1139/o06-045, PMID 16936798.

Bruni N, Capucchio MT, Biasibetti E, Pessione E, Cirrincione S, Giraudo L, Corona A, Dosio F. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules. 2016;21(6):752. doi: 10.3390/molecules21060752, PMID 27294909.

Levay PF, Viljoen M. Lactoferrin: a general review. Haematologica. 1995;80(3):252-67. PMID 7672721.

Sorensen M, Sorensen SPL. The proteins in whey. C R Trav Lab Carlsb Ser Chim. 1940;23:55-99.

Johanson B, Virtanen AI, Tweit RC, Dodson RM. Isolation of an iron-containing red protein from human milk. Acta Chem Scand. 1960;14:510-2. doi: 10.3891/acta.chem.scand.14-0510.chem.scand.14-0510.

Velusamy SK, Poojary R, Ardeshna R, Alabdulmohsen W, Fine DH, Velliyagounder K. Protective effects of human lactoferrin during aggregatibacter actinomycetemcomitans-induced bacteremia in lactoferrin-deficient mice. Antimicrobial Agents and Chemotherapy. 2014 Jan 1;58(1):397-404. doi: 10.1128/AAC.00020-13, PMID 24189260.

Vitetta L, Coulson S, Beck SL, Gramotnev H, Du S, Lewis S. The clinical efficacy of a bovine lactoferrin/whey protein Ig-rich fraction (Lf/IgF) for the common cold: a double-blind randomized study. Complement Ther Med. 2013;21(3):164-71. doi: 10.1016/j.ctim.2012.12.006. PMID 23642947.

Milewska A, Zarebski M, Nowak P, Stozek K, Potempa J, Pyrc K. Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. J Virol 201488. 2014;88(22):13221-30. doi: 10.1128/jviJVI.02078-14, PMID 25187545.

Burckhardt CJ, Greber UF. Virus movements on the plasma membrane support infection and transmission between cells. PLOS Pathog. 2009;5:e1000621. doi: 10.1371/journal.ppat.1000621.

Hoffmann M, Kleine Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–80271-280.e8. doi: 10.1016/j.cell.2020.02.052.cell.2020.02.052, PMID 32142651.

Serrano G, Kochergina I, Albors A, Diaz E, Oroval M, Hueso G, Serrano JM. Liposomal lactoferrin as potential preventative and cure for COVID-19. IJRHS. 2020;8(1):8-15. doi: 10.5530/ijrhs.8.1.3.

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJHLH. Across speciality collaboration. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–4:30628-0. doi: 10.1016/S0140-6736(20).

Zimecki M, Wlaszczyk A, Zagulski T, Kubler A. Lactoferrin lowers serum inter-leukin 6 and tumor necrosis factor alpha levels in mice subjected to surgery. Arch Immunol Ther Exp (Warsz). 1998;46(2):97-104. PMID 9613707.

Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P, Lepanto MS, Paesano R, Valenti P. Lactoferrin: a natural glycoprotein involved in iron and inflammatory homeostasis. Int J Mol Sci. 2017;18(9):1985. doi: 10.3390/ijms18091985, PMID 28914813.

Lepanto MS, Rosa L, Paesano R, Valenti P, Cutone ALepanto MS, Rosa L, Paesano R, Valenti P, Cutone A. Lactoferrin in aseptic and septic inflammation. Molecules. 2019;24(7):1323. doi: 10.3390/molecules24071323, PMID 30987256.

Reghunathan R, Jayapal M, Hsu LY, Chng HH, Tai D, Leung BP, Melendez AJ. Expression profile of immune response genes in patients with severe acute respiratory syndrome. BMC Immunol. 2005;6:2. doi: 10.1186/1471-2172-6-2, PMID 15655079.

Okubo K, Kamiya M, Urano Y, Nishi H, Herter JM, Mayadas T, Hirohama D, Suzuki K, Kawakami H, Tanaka M, Kurosawa M, Kagaya S, Hishikawa K, Nangaku M, Fujita T, Hayashi M, Hirahashi J. Lactoferrin suppresses neutrophil extracellular traps release in inflammation. Biomedicine. 2016;10:204-15. doi: 10.1016/j.ebiom.2016.07.012. PMID 27453322.

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-5. doi: 10.1126/science.1092385, PMID 15001782.

F Castanheira FVS, Kubes P VS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019;133(20):2178-85. doi: 10.1182/blood-2018-11-844530, PMID 30898862.

Hahn J, Knopf J, Maueröder C, Kienhöfer D, Leppkes M, Herrmann M. Neutrophils and neutrophil extracellular traps orchestrate initiation and resolution of inflammation. Clin Exp Rheumatol. 2016;34(4)Suppl 98:6-8. PMID 27586795.

Lee KH, Kronbichler A, Park DD, Park Y, Moon H, Kim H. Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review. Autoimmun Rev. 2017;16(11):1160-73. doi: 10.1016/j.autrev.2017.09.012, PMID 28899799.

Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134-47. doi: 10.1038/nri.2017.105, PMID 28990587.

Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, Brinkmann V, Jungblut PR, Zychlinsky A. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoOS Pathog. 2009;5(10):e1000639. doi: 10.1371/journal.ppat.1000639. PMID 19876394.

Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279-87. doi: 10.1038/nm.4294, PMID 28267716.

Law SM, Gray RD. Neutrophil extracellular traps and the dysfunctional innate immune response of cystic fibrosis lung disease: a review. J Inflamm.m (Lond). 2017;14:29. doi: 10.1186/s12950-017-0176-1. PMID 29299029.

Petrik M, Zhai C, Haas H, Decristoforo C. Siderophores for molecular imaging applications. Clin Transl Imaging. 2017;5(1):15-27. doi: 10.1007/s40336-016-0211-x, PMID 28138436.

Beddek AJ, Schryvers AB. The lactoferrin receptor complex in Gram-negative bacteria. Biometals. 2010;23(3):377-86. doi: 10.1007/s10534-010-9299-z, PMID 20155302.

Pogoutse AK, Moraes TF. Iron acquisition through the bacterial transferrin receptor. Crit Rev Biochem Mol Biol. 2017;52(3):314-26. doi: 10.1080/10409238.2017.1293606, PMID 28276700.

Wandersman C, Stojiljkovic I. Bacterial heme sources: the role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol. 2000;3(2):215-20. doi: 10.1016/Ss1369-5274(00)00078-3, PMID 10744995.

Huang W, Wilks A. Extracellular heme uptake and the challenge of bacterial cell membranes. Annu Rev Biochem. 2017;86:799-823. doi: 10.1146/annurev-biochem-060815-014214, PMID 28426241.

Redwan EM, Uversky VN, El-Fakharany EM, Al-Mehdar H. Potential lactoferrin activity against pathogenic viruses. C R Biol. 2014;337(10):581-95. doi: 10.1016/j.crvi.2014.08.003. PMID 25282173.

Chen JM, Fan YC, Lin JW, Chen YY, Hsu WL, Chiou SS. Bovine lactoferrin inhibits dengue virus infectivity by interacting with heparan sulfate, low-density lipoprotein receptor, and DC-SIGN. Int J Mol Sci. 2017;18(9):E1957. doi: 10.3390/ijms18091957, PMID 28895925.

Fernandes KE, Carter DA. The antifungal activity of lactoferrin and its derived peptides: mechanisms of action and synergy with drugs against fungal pathogens. Front Microbiol. 2017;8:2. doi: 10.3389/fmicb.2017.00002, PMID 28149293.

Liao H, Liu S, Wang H, Su H, Liu Z. Enhanced antifungal activity of bovine lactoferrin-producing probiotic Lactobacillus casei in the murine model of vulvovaginal candidiasis. BMC Microbiol. 2019;19(1):7. doi: 10.1186/s12866-018-1370-x, PMID 30621597.

Andres MT, Acosta Zaldivar M, Fierro JF. Antifungal mechanism of action of lactoferrin: identification of H+-ATPase (P3A-type) as a new apoptotic-cell membrane receptor. Antimicrob Agents Chemother. 2016;60(7):4206-16. doi: 10.1128/AAC.03130-15, PMID 27139463.

Wang B, Timilsena YP, Blanch E, Adhikari B. Lactoferrin: structure, function, denaturation and digestion. Crit Rev Food Sci Nutr. 2019;59(4):580-96. doi: 10.1080/ 10408398.2017.1381583, PMID 28933602.

Nairz M, Schroll A, Sonnweber T, Weiss G. The struggle for iron- a metal at the host-pathogen interface. Cell Microbiol. 2010;12(12):1691-702. doi: 10.1111/j.1462-5822.2010. 01529.x, PMID 20964797.

Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoOS Pathog. 2010;6(8):e1000949. doi: 10.1371/journal.ppat.1000949. PMID 20711357.

Belting M. Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci. 2003;28(3):145-51. doi: 10.1016/S0968-0004(03)00031-8, PMID 12633994.

Drobni P, Naslund J, Evander M. Lactoferrin inhibits human papillomavirus binding and uptake in vitro. Antiviral Res. 2004;64(1):63-8. doi: 10.1016/S0166-3542(04)00123-8j.antiviral.2004.05.005, PMID 15451180.

Puddu P, Borghi P, Gessani S, Valenti P, Belardelli F, Seganti L. Antiviral effect of bovine lactoferrin saturated with metal ions on early steps of human immunodeficiency virus type 1 infection. Int J Biochem Cell Biol. 1998;30(9):1055-62. doi: 10.1016/S1357-2725(98)00066-1, PMID 9785469.

Superti F, Siciliano R, Rega B, Giansanti F, Valenti P, Antonini G. Involvement of bovine lactoferrin metal saturation, sialic acid and protein fragments in the inhibition of rotavirus infection. Biochim Biophys Acta. 2001;1528(2-3):107-15. doi: 10.1016/S0304-4165(01)00178-7, PMID 11687297.

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. doi: 10.1016/S0140-6736(20)30628-0, PMID 32192578.

Kell DB, Pretorius E. To what extent are the terminal stages of sepsis, septic shock, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome actually driven by a prion/amyloid form of fibrin? Semin Thromb Hemost. 2018;44(3):224-38. doi: 10.1055/s-0037-1604108, PMID 28778104.

Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020;53(3):368-70. doi: 10.1016/j.jmii.2020.03.005. PMID 32205092.

Zenewicz LA. IL-22: there is a gap in our knowledge. Immunohorizons. 2018;2(6):198-207. doi: 10.4049/immunohorizons.1800006, PMID 31022687.

Tse GM, To KF, Chan PK, Lo AW, Ng KC, Wu A, Lee N, Wong HC, Mak SM, Chan KF, Hui DS, Sung JJ, Ng HK. Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS). J Clin Pathol. 2004;57(3):260-5. doi: 10.1136/jcp.2003.013276, PMID 14990596.

Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94(7):e00127-20. doi: 10.1128/JVI.00127-20, PMID 31996437.

Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11(7):995-8. doi: 10.1021/acschemneuro. 0c00122, PMID 32167747.

D'’Elia RV, Harrison K, Oyston PC, Lukaszewski RA, Clark GC. Targeting the “”cytokine storm” for therapeutic benefit. Clin Vaccine Immunol. 2013;20(3):319-27. doi: 10.1128/ CVI.00636-12, PMID 23283640.

Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020;506:145-8. doi: 10.1016/j.cca.2020.03.022, PMID 32178975.

Zhang G, Zhang J, Wang B, Zhu X, Wang Q, Qiu S. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. Respir Res. 2020;21(1):74. doi: 10.1186/s12931-020-01338-8, PMID 32216803.

Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, Qin R, Wang H, Shen Y, Du K, Zhao L, Fan H, Luo S, Hu D. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020:e3319. doi: 10.1002/dmrr.3319. PMID 32233013.

Danzi GB, Loffi M, Galeazzi G, Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur Heart J. 2020;41(19):1858. doi: 10.1093/eurheartj/ehaa254. PMID 32227120.

Heidt T, Ehrismann S, Hovener JB, Neudorfer I, Hilgendorf I, Reisert M, Hagemeyer CE, Zirlik A, Reinohl J, Bode C, Peter K, von Elverfeldt D, von Zur Muhlen C. Molecular imaging of activated platelets allows the detection of pulmonary embolism with magnetic resonance imaging. Sci Rep. 2016;6:25044. doi: 10.1038/srep25044, PMID 27138487.

Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094-9. doi: 10.1111/jth.1485117, PMID 32220112.

Lang J, Yang N, Deng J, Liu K, Yang P, Zhang G. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. Plos One. 2011;6(8):e23710. doi: 10.1371/journal.pone.0023710, PMID 21887302.

Pretorius E. Platelets as potent signaling entities in type 2 diabetes mellitus. Trends Endocrinol Metab. 2019;30(8):532-45. doi: 10.1016/j.tem.2019.05.003. PMID 31196615.

Ames BN. Prolonging healthy aging: longevity vitamins and proteins. Proc Natl Acad Sci USA. 2018;115(43):10836-44. doi: 10.1073/pnas.1809045115, PMID 30322941.

Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA, Kell DB. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev. 2020;33(2):190-217. doi: 10.1017/S0954422419000301, PMID 32051057.

Kawakami H, Park H, Park S, Kuwata H, Shephard RJ, Aoyagi Y. Effects of enteric-coated lactoferrin supplementation on the immune function of elderly individuals: a randomised, double-blind, placebo-controlled trial. Int Dairy J. 2015;47:79-85. doi: 10.1016/j.idairyj.2015.02.001.

Takeuchi T, Jyonotsuka T, Kamemori N, Kawano G, Shimizu H, Ando K, Harada E. Enteric-formulated lactoferrin was more effectively transported into blood circulation from the gastrointestinal tract in adult rats. Exp Physiol. 2006;91(6):1033-40. doi: 10.1113/expphysiol.2006.0348765543, PMID 16959821.

Published

15-05-2022

How to Cite

PATIL, A. S., R. PURI, and B. S. WAKURE. “A REVIEW ON LACTOFERRIN PRINCIPLE CONSTITUENT OF BOVINE COLOSTRUM: IN COVID19”. International Journal of Current Pharmaceutical Research, vol. 14, no. 3, May 2022, pp. 1-8, doi:10.22159/ijcpr.2022v14i3.1984.

Issue

Section

Review Article(s)