REVIEW ON SIZE EXCLUSION CHROMATOGRAPHY COUPLED WITH MASS SPECTROSCOPY
DOI:
https://doi.org/10.22159/ijcpr.2025v17i1.6055Keywords:
Hyphenated techniques, SEC-MS, Polymer analysis by SEC-MS, On-line couplingAbstract
The hyphenated technique was created by integrating the differentiating technique with directly spectroscopic technology to facilitate detection. It is discussed how SEC and electrospray ionization mass spectrometry (ESI-MS) can be combined, emphasizing the advantages this has for characterizing polymers. The capacity of SEC-ESI-MS to gather polymer structural information as well as to confirm polymer homologous transitions is first described. It's significant that the broad applicability of SEC-ESI-MS is underlined, for instance by its usage in the analysis of precise molecular weight distribution of polymers, the calculation of radical rate of polymerization coefficients, and the thorough exploration of radical photoinitiation systems. Thus, this momentous tutorial review intends to highlight the high potential of SEC-ESI-MS to emerge as a formidable and well-liked analytical method in polymer chemistry and to illustrate the capability of SEC-ESI-MS for the analysis of complicated polymers. The article addresses recent advancements in the uses of a variety of hyphenated techniques, such as the GC-MS method, LC-MS analysis, LC-FTIR, LC-NMR, CE-MS, and others.
Downloads
References
Wilson ID, Brinkman UA. Hyphenation and hypernation the practice and prospects of multiple hyphenation. J Chromatogr A. 2003;1000(1-2):325-56. doi: 10.1016/s0021-9673(03)00504-1, PMID 12877178.
Exarchou V, Fiamegos YC, Van Beek TA, Nanos C, Vervoort J. Hyphenated chromatographic techniques for the rapid screening and identification of antioxidants in methanolic extracts of pharmaceutically used plants. J Chromatogr A. 2006;1112(1-2):293-302. doi: 10.1016/j.chroma.2005.11.077, PMID 16359690.
Fekete S, Beck A, Veuthey JL, Guillarme D. Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J Pharm Biomed Anal. 2014 Dec;101:161-73. doi: 10.1016/j.jpba.2014.04.011, PMID 24816223.
Hong P, Koza S, Bouvier ES. Size exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol. 2012;35(20):2923-50. doi: 10.1080/10826076.2012.743724, PMID 23378719.
Engelhardt H, Ahr G. Optimization of efficiency in size exclusion chromatography. J Chromatogr A. 1983 Dec 30;282:385-97. doi: 10.1016/S0021-9673(00)91616-9.
Ricker RD, Sandoval LA. Fast reproducible size exclusion chromatography of biological macromolecules. J Chromatogr A. 1996;743(1):43-50. doi: 10.1016/0021-9673(96)00283-x, PMID 8817873.
Bhavyasri K, Samreen Begum M. Sumakanth: 2-dimensional gas chromatography-mass spectroscopy: a review. Int J Pharm Sci Rev Res. 2022;76(1):140-50.
Bhavyasri K, Reddy ED, Rambabu D. Gas chromatography-mass spectrometry (GC-MS) and its applications a review. Int J Res Anal Rev. 2019;6(1):456-65.
Bhavyasri K, Mounika G. Capillary electrophoresis mass spectrometry (CE-MS) and its applications a review. Int J Sci Res Rev. 2019;8(2):3161-76.
Bhavyasri K, Fatima A, Swethasri R, Sumakanth M. Role of LC-MS in pharmacokinetic and pharmacodynamic studies in bioanalysis: a review. J Glob Trends Pharm Sci. 2021;12(1):8887-91.
Kusler JA, Mitsch WJ, Larson JS. Wetlands. Sci Am. 1994;270(1):64-70. doi: 10.1038/scientificamerican0194-64B.
Marcoux J, Champion T, Colas O, Wagner Rousset E, Corvaia N, Van Dorsselaer A. Native mass spectrometry and ion mobility characterization of trastuzumab emtansine a lysine linked antibody-drug conjugate. Protein Sci. 2015;24(8):1210-23. doi: 10.1002/pro.2666, PMID 25694334.
Cech NB, CG Enke. Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev. 2001 Nov-Dec;20(6):362-87. doi: 10.1002/mas.10008.
Righetti PG, Verzola B. Folding/unfolding/refolding of proteins: present methodologies in comparison with capillary zone electrophoresis. Electrophoresis. 2001;22(12):2359-74. doi: 10.1002/1522-2683(200107)22:12<2359::AID-ELPS2359>3.0.CO;2-8, PMID 11519938.
Ehkirch A, Hernandez Alba O, Colas O, Beck A, Guillarme D, Cianferani S. Hyphenation of size exclusion chromatography to native ion mobility mass spectrometry for the analytical characterization of therapeutic antibodies and related products. J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Jun 1;1086:176-83. doi: 10.1016/j.jchromb.2018.04.010, PMID 29684909.
Fussl F, Cook K, Scheffler K, Farrell A, Mittermayr S, Bones J. Charge variant analysis of monoclonal antibodies using direct coupled ph gradient cation exchange chromatography to high-resolution native mass spectrometry. Anal Chem. 2018;90(7):4669-76. doi: 10.1021/acs.analchem.7b05241, PMID 29494133.
Jones J, Pack L, Hunter JH, Valliere Douglass JF. Native size exclusion chromatography mass spectrometry: suitability for an antibody-drug conjugate drug to antibody ratio quantitation across a range of chemotypes and drug loading levels. MAbs. 2020 Jan-Dec;12(1):1682895. doi: 10.1080/19420862.2019.1682895, PMID 31769727.
Wei B, Han G, Tang J, Sandoval W, YT Zhang. Native hydrophobic interaction chromatography hyphenated to mass spectrometry for characterization of monoclonal antibody minor variants. Analytical Chem. 2019;91(24):15360-4. doi: 10.1021/acs.analchem.9b04467.
Shi RL, Xiao G, Dillon TM, Mc Auley A, Ricci MS, Bondarenko PV. Identification of critical chemical modifications by size exclusion chromatography of stressed antibody target complexes with competitive binding. MAbs. 2021 Jan-Dec;13(1):1887612. doi: 10.1080/19420862.2021.1887612, PMID 33616001.
Liu H, Gaza Bulseco G, Faldu D, Chumsae C, Sun J. Heterogeneity of monoclonal antibodies. J Pharm Sci. 2008;97(7):2426-47. doi: 10.1002/jps.21180, PMID 17828757.
YU L, Remmele RL JR, He B. Identification of N-terminal modification for recombinant monoclonal antibody light chain using partial reduction and quadrupole time of flight mass spectrometry. Rapid Commun Mass Spectrom. 2006;20(24):3674-80. doi: 10.1002/rcm.2790, PMID 17117408.
H Shion. Development of integrated informatics workflows for the automated assessment of comparability for antibody-drug conjugates (ADCs) using LC-UV and LC-UV/MS. Waters Application Note. 720005366EN. 2015.
Shion H. High-performance vion ims qtof for monoclonal antibody intact and subunit mass analysis. Waters Application Note. 720005906EN. 2017.
Mc Pherson MJ, Hobson AD. Pushing the envelope: advancement of ADCs outside of oncology. Methods Mol Biol. 2020;2078:23-36. doi: 10.1007/978-1-4939-9929-3_2, PMID 31643047.
Kaur S, Bateman KP, Glick J, Jairaj M, F Kellie JF, Sydor J. IQ consortium perspective: complementary LBA and LC-MS in protein therapeutics bioanalysis and biotransformation assessment. Bioanalysis. 2020;12(4):257-70. doi: 10.4155/bio-2019-0279, PMID 32096432.
Kang L, Weng N, Jian W. LC–MS bioanalysis of intact proteins and peptides. Biomed Chromatogr. 2020;34(1):e4633. doi: 10.1002/bmc.4633, PMID 31257628.
Cong Y, Zhang Z, Zhang S, HU L, GU J. Quantitative MS analysis of therapeutic mAbs and their glycosylation for pharmacokinetics study. Proteomics Clin Appl. 2016;10(4):303-14. doi: 10.1002/prca.201500098, PMID 26548570.
Liu H, Gaza Bulseco G, Faldu D, Chumsae C, Sun J. Heterogeneity of monoclonal antibodies. J Pharm Sci. 2008;97(7):2426-47. doi: 10.1002/jps.21180, PMID 17828757.
Published
How to Cite
Issue
Section
Copyright (c) 2025 A. VAISHNAVI, BHAVYA SRI, MOGILI SUMAKANTH
This work is licensed under a Creative Commons Attribution 4.0 International License.