FORMULATION OF TOLNOFTATE LOADED CUBOSOMES FOR EFFECTIVE TRANSDERMAL DELIVERY: AN IN VITRO AND EX-VIVO STUDY

Authors

  • SAYALI T. PATIL Department of Pharmaceutics, Dr. Shivajirao Kadam College of Pharmacy, Kasabe Digraj-416305, Sangli, Maharashtra, India.
  • HARSHADA I. PATIL Department of Pharmaceutics, Dr. Shivajirao Kadam College of Pharmacy, Kasabe Digraj-416305, Sangli, Maharashtra, India https://orcid.org/0000-0002-7893-2364
  • ARCHANA V. VANJARI Department of Pharmacology, Dr. Shivajirao Kadam College of Pharmacy, Kasabe Digraj-416305, Sangli, Maharashtra, India
  • KIRAN A. WADKAR Department of Pharmacognosy, Dr. Shivajirao Kadam College of Pharmacy, Kasabe Digraj-416305, Sangli, Maharashtra, India

DOI:

https://doi.org/10.22159/ijcpr.2025v17i1.6016

Keywords:

Cubosomes, Tolnaftate, Topical cubosomal gel, In vitro drug release, Ex vivo skin permeation and skin penetration

Abstract

Objective: The novel topical application has several benefits over traditional dosing forms, such as preventing gastrointestinal discomfort, lowering liver drug metabolism, and increasing medication bioavailability. Tolnaftate is used as potential anti-fungal agent various fungal infections.

Methods: The cubosomes were formulated by emulsification technique using probe sonicator. The formulation was optimized using different concentrations of glyceryl monooleate and poloxamer 407.

Results: The formed cubosomes dispersion was subjected to entrapment efficiency, surface morphology, particle size, in vitro release, anti-fungal study and ex-vivo study. The improved formulation was then transformed to a cubosomal hydrogel by the addition of carbopol 934. The average particle size of the optimised cubosomes was 208.0 nm. Zeta potential has been found to be 49.8 mV, with an entrapment efficiency of almost 90.0%. The drug steady-state flux (Jss) values for Tolnaftate Cubosomal formulation, marketed formulation, and plain drug gel were nearly 11.98, 10.23, and 10.06 g/cm2. h. As compared to standard marketed preparation, the cubosome-loaded formulation demonstrated enhanced penetration, extended deposition, and prolonged drug release.

Conclusion: The drug had low solubility and permeability; it was overcome and produced superior outcomes in the form of cubosomes, which considerably increased the drug's solubility and permeability.

Downloads

Download data is not yet available.

References

Jain S, Jain V, Mahajan SC. Lipid-based vesicular drug delivery systems. Adv Pharm. 2014;2014:1-12. doi: 10.1155/2014/574673.

Ashara KC, Paun JS, Soniwala MM, Chavda JR, Nathawani SV, Mori NM. Vesicular drug delivery system: a novel approach. Mintage J Pharm Med Sci. 2014:3(3):1-14.

Harshini B, Harshini B, Kumari PV, Rao YS. Review on cubosomes. Int J Curr Pharm Res. 2021;13(6):37-42. doi: 10.22159/ijcpr.2021v13i6.1926.

Spicer PT, Hayden KL, Lynch ML, Ofori Boateng A, Burns JL. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir. 2001;17(19):5748-56. doi: 10.1021/la010161w.

Kamboj S, Saini V, Magon N, Bala S, Jhawat V. Vesicular drug delivery systems: a novel approach for drug targeting. Int J Drug Deliv. 2013;5(2):121-30.

Garg G, Saraf S, Saraf S. Cubosomes: an overview. Biol Pharm Bull. 2007;30(2):350-3. doi: 10.1248/bpb.30.350, PMID 17268078.

Zakaria F, Ashari SE, Mat Azmi ID, Abdul Rahman MB. Recent advances in encapsulation of drug delivery (active substance) in cubosomes for skin diseases. J Drug Deliv Sci Technol. 2022;68:103097. doi: 10.1016/j.jddst.2022.103097.

Anbarasan B, Grace XF, Shanmuganathan S. An overview of cubosomes smart drug delivery system. Sri Ramachandra J Med. 2015;8(1):1-4.

Gagliardi A, Cosco D, Udongo BP, Dini L, Viglietto G, Paolino D. Design and characterization of glyceryl monooleate nanostructures containing doxorubicin hydrochloride. Pharmaceutics. 2020;12(11):1017. doi: 10.3390/pharmaceutics12111017, PMID 33114287.

Barriga HM, Holme MN, Stevens MM. Cubosomes: the next generation of smart lipid nanoparticles? Angew Chem Int Ed Engl. 2019;58(10):2958-78. doi: 10.1002/anie.201804067, PMID 29926520.

Bhosale RR, Osmani RA, Harkare BR, Ghodake PP. Cubosomes: the inimitable nanoparticulate drug carriers. Scholars Acad J Pharm. 2013;2(6):481-6.

Gaballa SA, El Garhy OH, Abdelkader H. Cubosomes: composition preparation and drug delivery applications. J Adv Biomed Pharm Sci. 2019;3(1):1-9. doi: 10.21608/jabps.2019.16887.1057.

Spicer P. Cubosome processing industrial nanoparticle technology development. Chem Eng Res Des. 2005;83(11):1283-6. doi: 10.1205/cherd.05087.

HE H, Rahimi K, Zhong M, Mourran A, Luebke DR, Nulwala HB. Cubosomes from hierarchical self-assembly of poly (ionic liquid) block copolymers. Nat Commun. 2017;8(1):14057. doi: 10.1038/ncomms14057, PMID 28091605.

Leung AK, Lam JM, Leong KF, Hon KL. Tinea corporis: an updated review. Drugs Context. 2020;9:5-6. doi: 10.7573/dic.2020-5-6, PMID 32742295.

N Politis S, Colombo P, Colombo G, M Rekkas D. Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm. 2017;43(6):889-901. doi: 10.1080/03639045.2017.1291672, PMID 28166428.

Nasr M, Younes H, Abdel Rashid RS. Formulation and evaluation of cubosomes containing colchicine for transdermal delivery. Drug Deliv Transl Res. 2020;10(5):1302-13. doi: 10.1007/s13346-020-00785-6, PMID 32399604.

Azhari H, Strauss M, Hook S, Boyd BJ, Rizwan SB. Stabilising cubosomes with tween 80 as a step towards targeting lipid nanocarriers to the blood-brain barrier. Eur J Pharm Biopharm. 2016 Jul;104:148-55. doi: 10.1016/j.ejpb.2016.05.001, PMID 27163239.

Alamoudi JA, Almoshari Y, Alotaibi HF. Formulation and evaluation of pluronic F-127 assisted carboplatin cubosomes. Indian J Pharm Educ Res. 2023;57(4):1258-64. doi: 10.5530/ijper.57.4.150.

Flak DK, Adamski V, Nowaczyk G, Szutkowski K, Synowitz M, Jurga S. AT101 loaded cubosomes as an alternative for improved glioblastoma therapy. Int J Nanomedicine. 2020;15:7415-31. doi: 10.2147/IJN.S265061, PMID 33116479.

Nasr M, Dawoud M. Sorbitol-based powder precursor of cubosomes as an oral delivery system for improved bioavailability of poorly water-soluble drugs. J Drug Deliv Sci Technol. 2016 Oct;35:106-13. doi: 10.1016/j.jddst.2016.06.011.

Kesharwani R, Jaiswal P, Patel DK, Yadav PK. Lipid-based drug delivery system (lbdds): an emerging paradigm to enhance oral bioavailability of poorly soluble drugs. Biomed Mater Devices. 2023;1(2):648-63. doi: 10.1007/s44174-022-00041-0.

Meghana G, Karri VV Satyanarayana Reddy, Talluri Siddhartha, Gunda Raviteja, Chennareddy Saikrishnaand, Ganesh GNK. Formulation and evaluation of tolnaftate-loaded topical liposomal gel for effective skin drug delivery to treat fungal diseases. J Chem Pharm Res. 2014;6(10):856-66.

Verma S, Mujahid M, Farooqui NA, Ahmad S. Formulation and evaluation of topical microemulgel containing tolnaftate. Int J Pharm Sci Rev Res. 2023;83(2):31-40. doi: 10.47583/ijpsrr.2023.v83i02.005.

Chountoulesi M, Perinelli DR, Aleksander Forys, G Bonacucina, Barbara Trzebicka, Stergios Pispas, Costas Demetzos. Liquid crystalline nanoparticles for drug delivery: the role of gradient and block copolymers on the morphology internal organisation and release profile. Eur J Pharm Biopharm. 2021 Jan;158:21-34. doi: 10.1016/j.ejpb.2020.08.008.

Published

15-01-2025

How to Cite

PATIL, S. T., H. I. PATIL, A. V. VANJARI, and K. A. WADKAR. “FORMULATION OF TOLNOFTATE LOADED CUBOSOMES FOR EFFECTIVE TRANSDERMAL DELIVERY: AN IN VITRO AND EX-VIVO STUDY”. International Journal of Current Pharmaceutical Research, vol. 17, no. 1, Jan. 2025, pp. 33-42, doi:10.22159/ijcpr.2025v17i1.6016.

Issue

Section

Original Article(s)