Cu AND Zn SUBSTITUTED HYDROXYAPATITE COATINGS ON TiO2 NANOTUBES FORMED BY ELECTROCHEMICAL METHODS

  • Tapash R Rautray Biomaterials and Tissue Regeneration Laboratory, Centre of Excellence in Theoretical and Mathematical Sciences, Siksha ‘O’ Anusandhan University, Khandagiri Square, Bhubaneswar – 751030, Odisha, India

Abstract

 

ABSTRACT

Objective

Hydroxyapatite (HA) coatings on TiO2 nanotubes (TNT) provide osteoconduction and hence promote bone healing and apposition, leading to the rapid biological fixation of implants. In the current study, TNT surfaces were formed by electrochemical anodization technique and Cu and Zn were simultaneously substituted in HA coating so as to form a coating with antibacterial properties with good osteoconductive surface.

 

Methods:

Ion substituted HA coatings such as Cu-HA and Zn-HA were deposited cathodically on TNT surfaces. This work elucidated the antibacterial effect and cytocompatibility of Cu and Zn substituted HA coating on TNT. To improve the antibacterial property of pure HA, Cu and Zn were substituted into its structure.

 

Results:
XRD of the coatings showed the formation of Cu-HA and Zn-HA while PIXE confirmed the coatings to be calcium deficient. MTT assay was employed to assess the cell survival rate of Cu-HA and Zn-HA coatings with osteoblast-like cells.

 

Conclusion:

While both the coating showed good bioactivity, better cell activities were observed in case of Zn-HA coating. Better cell activities on Zn-HA may be attributed to the cytocompatibility nature of Zn-HA and because of its higher roughness. 

Author Biography

Tapash R Rautray, Biomaterials and Tissue Regeneration Laboratory, Centre of Excellence in Theoretical and Mathematical Sciences, Siksha ‘O’ Anusandhan University, Khandagiri Square, Bhubaneswar – 751030, Odisha, India
Assistant Prof, Biomaterials and Tissue Regeneration Laboratory, Centre of Excellence in Theoretical and Mathematical Sciences, Siksha ‘O’ Anusandhan University, Khandagiri Square, Bhubaneswar – 751030, Odisha, India

References

1. T.R. Rautray, R. Narayanan, T.Y. Kwon, and K.H. Kim, J. Biomed. Mater. Res. B, 2010, vol. 93B, pp. 581-591.

2. T.R. Rautray, R. Narayanan, and K.H. Kim, Prog. Mater. Sci., 2011, vol. 56, pp. 1137 -1177.

3. Y. Wang, C. Wen, P. Hodgson, and Y. LI, J. Biomed. Mater. Res.A, 2014, vol.102A, pp. 743–751.

4. K. S. Brammer, H. Kim, K. Noh, M. Loya, C. J. Frandsen, L. Chen, L. S. Connelly and S. Jin, Adv. Eng. Mater., 2011, vol. 13, pp. B88-B94.

5. C. H. Chang, H. C. Lee, C. C. Chen, Y. H. Wu, Y. M. Hsu, Y. P. Chang, T. Yang, and H. W. Fang, J. Biomed. Mater. Res.A, 2012, vol. 100A, pp. 1687–1695.

6. Y. Wang, C. Wen, P. Hodgson, and Y. LI, J. Biomed. Mater. Res.A, 2014, vol.102A, pp. 743–751.

7. S. H. Oh, R. R. Finones, C. Daraio, L.Chen and S. Jin, Biomater. 2005, vol. 26, pp. 4938–4943.

8. S. Sobieszczyk and R. Klotzke, Adv. Mater. Sci., 2011, vol. 11, pp. 17-26.

9. T.R. Rautray, R. Narayanan, T.Y. Kwon, and K.H. Kim, Thin Solid Films, 2010, vol. 518, pp. 3160-3163.

10. E. S. Thian , J. Huang , M.E. Vickers , S.M. Best , Z.H. Barber , W. Bonfield , Journal of Materials Science, 2006, vol. 41, pp. 709.

11. Y. Huang, H. Zenga, X. Wang, D. Wang, Applied Surface Science, 2014, vol.290, pp. 353– 358

12. H. Hu, W. Zhang , Y. Qiao , X. Jiang , X. Liu, C. Ding , Acta Biomaterialia, 2012, vol.8, pp.904–915

13. F. Bir , H. Khireddinea, A. Touatib, D. Sidanea, S. Yalaa, H. Oudadesse, Applied Surface Science, 2012, vol. 258, pp. 021– 7030

14. Z. Radovanovic, B. Jokic, D. Veljovic, S. Dimitrijevic,V. Kojic, R. Petrovic, D. Janackovic, Applied Surface Science, 2014, vol. 307, pp. 513–519

15. K. Huo, X. Zhang , H. Wang, L. Zhao , X. Liu , P. K. Chu, Biomaterials, 2013, vol. 34, pp. 3467-3478

16. S. Zhao, W. Dong, Q. Jiang, F. He, X. Wang, G. Yang, Biomed & Biotechnol, 2013, vol.14, pp.518-525.

17. T. R. Rautray, S. Swain and K. H. Kim, Adv. Sci. Lett., 2014, vol. 20, pp. 801-803.

18. Y. Huang, S. G. Han, Q. Q. Ding, Y. J. Yan and X. F. Pang, Spectrosc. Spectral Anal., 2013, vol. 33. pp. 2379-2382.

19. T. R. Rautray, B. Mohapatra and K. H. Kim, Adv. Sci. Lett., 2014, vol. 20, pp. 879-81.

20. K. W. Lee, C. M. Bae, J. Y. Jung, G. B.Sim, T. R. Rautray, H. J. Lee, T. Y. Kwon, and K. H. Kim, J. Biomed. Mater. Res., 2011, vol. 98B, pp. 395-407.

21. ASTM C633-79, 1980.

22. R. Narayanan, T. Y. Kwon and K. H. Kim, Mater. Chem. Phys., 2009, vol. 117, pp. 460–464.

23. T. R. Rautray, V. Vijayan and S. Panigrahi, Eur. J. Gastroenterol. Hepatol, 2006, vol. 18, pp. 999-1003.

24. A Kar, K. S. Raja and M. Misra, Surf. Coat. Technol., 2006, vol. 201, pp. 3723–3731

25. Z. Mohammadi, A. A. Ziaei-moayyed and A. M.Sheikh-mehdi, Appl. Surf. Sci., 2007, vol. 253, pp. 4960-65.
Statistics
190 Views | 270 Downloads
How to Cite
Rautray, T. (2016). Cu AND Zn SUBSTITUTED HYDROXYAPATITE COATINGS ON TiO2 NANOTUBES FORMED BY ELECTROCHEMICAL METHODS. Innovare Journal of Engineering & Technology, 4(3), 7-10. Retrieved from https://innovareacademics.in/journals/index.php/ijet/article/view/13892
Section
Original Article(s)