LOW TEMPERATURE SOL-GEL SYNTHESIS OF TIN OXIDE NANOPARTICLES FOR PHOTOELECTROCHEMICAL SOLAR CELL APPLICATION

Authors

  • SAMBHAJI S. BHANDE Department of Physic, baburaoji Adaskar Mahavidhyalaya, Kaij Dist Beed, Maharashtra, India.

Keywords:

Cobalt ferrite, Rare earth, Structural properties

Abstract

A renewable energy has been always a topic of interest for researchers. The aevances in solar cells from first generation to third generation solar cells have seen many materials. The low cost gratzel cells have made an impact on the solar cell manufacturing although the low efficiency as compared to silicon solar cells the low cost manufacturing and abondant material availability for large production makes it a potential candidate.The tin chloride precursor initiated sol-gel chemical method for synthesizing tin oxide (SnO2) nanoparticles electrode is envisaged in dye-sensitized solar cells. Three steps; synthesis of nanoparticles, formation of paste using suitable surfactants and film development using doctor-blade method, are adopted for obtaining SnO2 electrode. The films of SnO2 nanoparticles formed onto glass and indium-tin-oxide substrates are annealed at 450 °C for 3 h. Influence of indium-tin-oxide on the structural elucidation, morphological evaluation, grain size confirmation and Raman shift analysis of the SnO2 nanoparticles is eliminated by considering glass as the depositing substrate. Enhanced light absorbance at 500 nm due to the N719 dye molecules adsorption compared to pristine SnO2 electrode has showed 1.62% solar-to-electrical conversion efficiency.

References

1. Gratzel M., Conversion of sunlight to electric power by nanocrystalline dyesensitizedsolar cells. J Photochem Photobiol A: Chem 2004; 164,3-14.
2. Kuang,Je´ re´mie Brillet D., Chen P., Takata, M. Uchida, S. Miura, H. Sumioka, K. Shaik, M.Z. Gratzel, M. Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dye-Sensitized Solar Cells. ACS nano 2008;2: 1113-1116.
3. Zaban, A. Chen, S.G. Chappel, S. Gregg, B.A. Nanoporous Electrodes for Dye Sensitized Solar Cells. Chem Commun 2000;22: 2231– 2232.
4. Gubbala, S. Chakrapani, V. Kumar, V. Sunkara, M.K. Band-Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on SnO2 Nanowires. Adv. Funct. Mater 2008);18, :2411-2418.
5. Hara, K. Sato, T. Katoh, R. Furube, A. Ohga, Y. Shinpo, A. Suga, S. Sayama, K. Sugihara, H. Arakawa, H. Molecular Design of Coumarin Dyes forEfficient Dye-Sensitized Solar Cells. J Phys Chem B 2003;107:597-606.
6. Li, Z. Wang, H. Liu, P. Zhao, B. Zhang Y. Synthesis and field-emission of aligned SnO2 nanotubes arrays. Appl Surf Sci 2009;255: 4470-4473.
7. Liu, Y. Liu, M. Growth of Aligned Square - Shaped SnO2 Tube Arrays.Adv Funct Mater (2005);15: 57-62.
8. Ma, Y.J. Zhou, F. Lu, L. Zhang, Z. Low-temperature transport properties of individual SnO2 nanowires. Solid State Commun. 2004;130:313-316.
9. Dai, Z.R. Pan, Z.W. Wang, Z.L. Ultra-long Single Crystalline Nanoribbon of Tin Oxide. Solid State Commun 2001;118:351-354.
10. Dai, Z.R.Gole, J.L. Stout, J.D. Wang, Z.L. Tin Oxide Nanowires, Nanoribbons, and Nanotubes. J Phys Chem B 2002; 106:1274-1279.
11. Jiang, X. Wang, Y. Herricks, T. Xia, Y. Ethyledne Glycol-Mediated Synthesis of Metal Oxide Nanowires. Mater Chem 2004;14: 695-703.
12. Liu, Y. Zheng, C. Wang, W. Yin, C. Wang, G. Synthesis and Characterization of Rutile SnO2 Nanorods. Adv Mater 2001;13:1883-1887.
13. Dale, R.S. Rastomjee, C.S. Potter, F.H. Egdell, R.G. Sb and Bi implanted SnO2 thin films: photoemission studies and application as gas sensors. Appl Surf Sci 1993;70/71: 359-362.
14. Martel, A. Briones, F.C. Fandino, J. Rodriguez, R.C. Perez, P.B. Navarro, A.Z. Torres, M.Z. Pena, J.L. Chemical and phase composition of SnOx:F films grown by DC reactive sputtering. Surf Coat Technol 1999;122:136-142.
15. Thangadurai, P. Bose, A.C. Ramasamy, S. Kesavamoorthy, R. Ravindran, T.R.High Pressure effects on electrical resistivity and dielectric properties of nanocrystalline SnO2, J. Phys. and Chem. of Solids. 2005; 66:1621-1627.
16. Antonio, J.A.T. Baez, R.G. Sebastian, P.J. Vàzquez, A.J. Thermal stability andstructural deformation of rutile SnO2 nanoparticles. J. Solid State Chem 2003;174: 241-248.
17. Legendre, F. Poissonnet, S. Bonnailie, P. Synthesis of nanostructured SnO2 materials by reactive ball-milling. J Alloys Compd 2007;434:400-404.
18. Gu, F. Wang, S.F. Lü, M.K. Cheng, X.F. Liu, S.W. Zhou, G.J. Xu, D. Yuan, D.R. Luminescence of SnO2 thin films prepared by spin-coating method. J Cryst Growth 2004;262: 182-185.
19. Kim, W. Shim, S.H. Synthesis and characteristics of SnO2 needle-shaped nanostructures, J Alloys and Compd 2006;426:286-289.
20. Chappel, S. Zaban, A. Nanoporous SnO2 electrodes for dye-sensitized solar cells:improved cell performance by the synthesis of 18 nm SnO2 colloids. Sol Energy Mater Sol Cells 2002;71:141-152.
21. Sayama, K. Sugihara, H. Arakawa. H. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem Mater 1998;10:3825-3832.
22. Fukai, Y. Kondo, Y. Mori, S. Suzuki, E. Highly efficient dye-sensitized SnO2 solar cells having sufficient electron diffusion length. Electrochem Commun 2007; 9: 1439-1443.
23. Lee, J.H. Park, N.G. Shin, Y.J. Nano-grain SnO2 electrodes for high conversion efficiency SnO2–DSSC. Sol Engy Mater sol Cells 2011;95: 179-183.
24. Yamazoe, N. New approaches for improving semiconductor gas sensors.Sens Actuators B Chem 1991;5:7-19.
25. Kravets, V.G. Photoluminescence and Raman spectra of SnOx nanostructures dopedwith Sm ions, Opt Spectrosc 2007;103:766-771.
26. Gubbala, S. Chakrapani, V. Kumar, V. Sunkara, M.K. Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires. Adv Funct Mater 2008;8:12411-2418.
27. Kruk, M. Jaroniec, M. Gas adsorption characterization of ordered organic inorganic nanocomposite materials. Chem Mater 2001;1:3169-3183.
28. Umar, A. Hajry, A.A. Hahn, Y.B. Kim, D.H. Rapid synthesis and dye sensitized solar cell applications of hexagonal-shaped ZnO nanorods. Electrochimica Acta 2009;54: 5358-5362.
29. Prasittichai, C. Hupp, J.T.Surface modification of SnO2 photoelectrodes in dyesensitized solar cells: Significant improvements in photovoltage via Al2O3 atomic layer deposition. J Phys Chem Lett 2010;1: 1611-1615.
30. Baraton, M. I. FTIR spectrometry as a quality control method for surface engineering of nanomaterials. Mater Res Soc Proc 2001;636:D811-D8110.
31. Kuang, D. Klein, C. Ito, S. Moser, J.E. Baker, R.H. Zakeeruddin, S.M. Gratzel, M. High molar extinction coefficient Ion-coordinating Ruthenium sensitizer for efficient and stable mesoscopic dye sensitized solar cells. Adv. Func. Mater. 2007;17:154-160.

Published

31-05-2020

How to Cite

S. BHANDE, S. (2020). LOW TEMPERATURE SOL-GEL SYNTHESIS OF TIN OXIDE NANOPARTICLES FOR PHOTOELECTROCHEMICAL SOLAR CELL APPLICATION. Innovare Journal of Sciences, 8(7), 126–128. Retrieved from https://innovareacademics.in/journals/index.php/ijs/article/view/38556

Issue

Section

Articles