• Dhaval Nileshbhai Pandya Pioneer Pharmacy Degree College


Nanotechnology is the manipulation of matters on an atomic & molecular scale. It works with material devices & other structure with at dimension of sized 1 to 100 nanometers.  Cancer is caused by mutation of genes which control the growth and division of cells. Detection or treatment is possible by detecting the growth of the cells and treated by destroying cancer cells. Nanoparticles (NP) being a very small sized, have the ability to enter inside the cells and can access the DNA molecules or genes and therefore, there is a possibility that the defect in the genes can be detected.  Treatment of cancer is also possible by nanotechnology drug delivery system. It includes certain NP, that can be designed to absorb preferentially certain wave length of radiation and if they enters in the cancerous cells, they will destroy them. Nanotechnology can be used to create therapeutic agents that target specific cells and deliver toxin to kill them. The NP will circulate through the body, detect cancer associated molecular changes, assist with imaging, release a therapeutic agent and then monitor the effectiveness of the intervention. 


McNeil SE. Nanotechnology for the Biologist. Journal of Leukocyte 2005; 78: 585-594.

Harisinghani MG, and Weissleder R. Sensitive noninvasive detection of lymph node metastases, Plos Medicine, 1, 202–209, 2004.

Gordon AN et al. Recurrent epithelial ovarian carcinoma: A randomized phase III study of pegylated liposomal doxorubicin versus topo tecan, Journal of Clinical Oncology, 19, 3312–3322, 2001.

Cuenc AG, Jiang H, Hochwald SN, Delano M, Cance WG, Grobmyer SR. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 2006, 107, 459-466.

Gennaro a Remington: The Science and Practice of pharmacy. . 20th ed. USA: Lippincott, Williams & Wilkins; 2000; 20:314,918- 919,924

Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136,642–655 [2009].

Inui, M., Martello, G. & Piccolo, S. MicroRNA control of signal transduction. Nature Rev. Mol. Cell Biol. 11, 252–263 [2010].

Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 [1993].

Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 [2011].

Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297[2004].

Diederichs, S. & Haber, D. A. Dual role for argonautes in MicroRNA processing and posttranscriptional regulation of MicroRNA expression. Cell 131, 1097–1108 [2007].

Garzon, R., Calin, G. A. & Croce, C. M. MicroRNAs in cancer. Ann. Rev. Med. 60, 167–179[2009].

Ortholan, C. et al. MicroRNAs and lung cancer: new oncogenes and tumor suppressors, new prognostic factors and potential therapeutic targets. Curr. Med. Chem. 16, 1047–1061[2009].

Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nature Rev. Cancer 6,857–866 [2006].

Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 [2008].

Kosaka, N. et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells.J. Biol. Chem. 285, 17442–17452 [2010].

Rabinowits, G., Gerçel-Taylor, C., Day, J. M., Taylor, D. D. & Kloecker, G. H. Exosomal microRNA: a diagnostic marker for lung cancer. Clin. Lung Cancer 10, 42–46 [2009].

Rosell, R., Wei, J. & Taron, M. Circulating MicroRNA signatures of tumor- derived exosomes for early diagnosis of non-small-cell lung cancer. Clin. Lung Cancer 10, 8–9 [2009].

Alivisatos AP: Semiconductor clusters, nanocrystals, and quantum dots. Science 271[5251], 933-937 [1996].

Arya H, Kaul Z, Wadhwa R, Taira K, Hirano T, Kaul SC: Quantum dots in bio-imaging: revolution by the small. Biochem. Biophys. Res. Commun. 329[4], 1173-1177 [2005].

Nirmal M, Brus L: Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32[5], 407-414 [1999].

Michalet X, Pinaud FF, Bentolila LA et al.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307[5709], 538-544 [2005].

Hines MA, Guyot-Sionnest P: Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. J. Phys. Chem. 100[2], 468-471 [1996].

Dabbousi BO, Rodriguez-Viejo J, Mikulec FV et al.: [CdSe]ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101[46], 9463-9475 [1997].

Micic OI et al.: Synthesis and characterization of Inp, Gap, and Gainp2 quantum dots. J. Phys. Chem. 99[19], 7754-7759 [1995].

Kim S, Bawendi MG: Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc. 125[48], 14652-14653 [2003].

Kim S, Lim YT, Soltesz EG et al.: Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22[1], 93-97 [2004].

ASTM International. E 2456-06 Terminology for nanotechnology. West Conshohocken, PA: ASTM International, 2006

Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett 2006;6:1121–5.

Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. 2006 ;2:1412–17.

Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology,catalysis, and nanotechnology. Chem Rev 2004;104:293–346.

G. Barratt, Colloidal drug carriers: Achievements and perspectives, Cell Mol. Life Sci. 2003, 60, 21–37.

V.S. Shenoy I.K. Vijay,R.S. Murthy,Tumour targeting: Biological factors and formulation advances in injectable lipid nanoparticles, J. Pharm. Pharmacol. 2005, 57, 411– 422 nanotechnology-treat-cancers-and-viral-infections

Desar IM, van Herpen CM, van Laarhoven HW, Barentsz JO, Oyen WJ, van der Graaf WT. Beyond RECIST: Molecular and functional imaging techniques for evaluation of response to targeted therapy. Cancer Treat Rev 2009;35:309-21.

Nielsen DL, Andersson M, Kamby C. HER2-targeted therapy in breast cancer. Monoclonal

antibodies and tyrosine kinase inhibitors. Cancer Treat Rev 2009;35:121-36.

Sultana N, Shenoy S, Sham M, Keshav S, Kaul R. Nanogoldtechnology-imaging, sensing

and target therapy in head and neck cancer. Clin Cancer Investig 2012;1:6-12.

Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drugdelivery delivery system, for cancer therapies. Nanoscale Res Lett 2011;6:555.

Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354:56- 8.

Singh P. Carbon nanotube and their biomedical applications: A review Chalcogenide Lett 2010;7:389-96.

Saeed K. Review on properties, dispersion and toxicology of carbon nanotubes. J Chem Soc Pak 2010;32:559-64.

Daniel S, Rao TP, Rao KS, Rani SU, Naidu GR, Lee HY, et al. A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sens Actuators B Chem 2007;122:672-82.

Pietronave S, Iafisco M, Locarno D, Rimondini L, Prat M. Functionalized nanomaterials, for diagnosis and therapy of cancer.J Appl Biomater Biomech 2009;7:77-

Liu Z, Winters M, Holodniy M, Dai H. siRNA delivery into human T cells and primary. cells with carbon-nanotube transporters. Angew Chem Int Ed Engl 2007;46:2023-7.

Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007;2:47-52.

Ajima K, Yudasaka M, Murakami T, Maigne A, Shiba K, Ijima S. Carbon nanohorns as anticancer drug carriers. MolPharm 2005;2:475-80.

Fisher JW, Sarkar S, Buchanan CF, Szot CS, Whitney J, Hatcher HC, et al. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res 2010;70:9855-64.

Kam NW, Liu Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation the uptake mechanism and pathway. Angew Chem Int Ed Engl 2006;45:577-81.

Varkouhi AK, Foillard S, Lammers T, Schiffelers RM, Doris E, Hennink WE, et al. SiRNA delivery with functionalized carbon nanotubes. Int J Pharm 2011;416:419-25.

Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev 2006;106:1105-36.

Fabbro C, Ali-Boucetta H, Da Ros T, Kostarelos K, Bianco A, Prato M. Targeting carbon nanotubes against cancer. Chem Commun 2012;48:3911-26.

Ritter U, Scharf P, Dmytrenko OP, Kulish NP, Prylutskyy YI, Belyi NM, et al. Radiation damage and Raman vibrational modes of single-walled carbon nanotubes. Chem Phys Lett 2007;447:252-6.

Nemilentsau AM, Slepyan GY, Maksimenko SA. Thermal radiation from carbon nanotubes in the terahertz range. Phys Rev Lett 2007;99:147-403.

Lee KP, Gopalan AY, Santhosh P, Lee SH, Nho YC. Gamma radiation induced distribution gold nanoparticles into carbon nano tube-polyaniline composite. Compos Sci Technol 2007;67:811-6.

Gan non CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 2007;110: 2654-65.

D. Farin, D. Avnir, Surface fractality of dendrimers. . Angew. Chem. Int Ed. Engl. 1991. 30, 1377–1379. C. S. Goh, D. Milburn, M.

Gerstein, Conformational changes associated with protein-protein interactions. Curr. Opin. Struct. Biol. 2004. 14, 104–109.

A.D. Schlu¨ter, J. P. Rabe, Dendronized polymers: Synthesis, characterization, assembly at interfaces, and manipulation. Angew. Chem. Int. Ed. 2000. 39, 864–883.

B. Klajnert, M. Bryszewska, Dendrimers: Properties and applications. Acta Biochim. Pol. 2001. 48, 199–208.

Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, , in vivo imaging, and diagnostics. Science 2005 ; 307 [5709]: 538 -44.

Derfus AM, Chen AA, Bhatia SN, et al. Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 2007 ; 18 [5]: 1391 -6.

McNamara JO, Andrechek ER, Wang Y, et al. Cell type-speciï¬c delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006 ; 24 [8]: 1005 -15.

Medarova Z, Pham W, Farrar C, et al. In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 2007 ; 13 [3]: 372 -7.



How to Cite

Pandya, D. N. (2013). NOVEL DIAGNOSIS AND TREATMENT OF CANCER BY NANOTECHNOLOGY: A REVIEW. Innovare Journal of Sciences, 1(3), 17–20. Retrieved from