ASSESSMENT OF α- AMYLASE INHIBITORY ACTION OF SOME EDIBLE PLANT SOURCES

Authors

  • Jannathul Firdhouse m Avinashilingam University for Women
  • Lalitha P Assistant Professor (SG) Department of ChemistryAvinashilingam University for Women

Abstract

Diabetes mellitus is one of the major causes for various manifestations of diseases and clinical complications. Plants are good sources of medicinal compounds and some are traditionally used to control Diabetes mellitus. In this study, the anti-diabetic potential of some edible plants was assessed by α-amylase inhibition assay. Among the studied plants, the extracts of Amaranthus dubius and Alternanthera sessilis were found to possess better inhibition potential against α-amylase enzyme. Acarbose and metformin used as standards for reference showed 67% and 48% inhibition efficiency respectively at a concentration of 250 µg/mL and 500 µg/mL. The results of the study ascertain the use of plants in the control of Diabetes mellitus. The inhibitory action of α-amylase mediated through the synergistic action of the phytoconstituents in the plants, lowers the glycemic level, reducing the risks associated with a sudden increase in blood sugar. The results of the study demonstrate the successful use of in vitro models in screening the plant sources for anti-diabetic activity. 

Author Biography

Jannathul Firdhouse m, Avinashilingam University for Women

Department of Chemistry

References

Meenakshi, P., Bhuvaneshwari, R., Rathi, M.A., Thirumoorthi, L., Guravaiah, D.C., Jiji, M.J., and Gopalakrishnan, V.K. (2010) Antidiabetic activity of ethanolic extract of Zaleya decandra in Alloxan-Induced Diabetic Rats, Appl. Biochem. Biotechnol. 162:1153-1159.

Teugwa, C.M., Mejiato, P.C., Zofou, D., Tchinda, B.T., and Boyom, F.F. (2013) Antioxidant and antidiabetic profiles of two African medicinal plants: Picralima nitida (Apocynaceae) and Sonchus oleraceus (Asteraceae), BMC Complement. Altern. Med. 13(175):1-9.

Carper, D.A., Wistow, G., Nishimura, C., Graham, C., Wanatable, K., Fujii, Y., and Hayashi, O. (1989) A superfamily of NADPH-dependent reductases in eukaryotes and prokaryotes, Exp. Eye Res. 49:377-388.

Kinoshita, J.H. (1990) A thirty-year journey in the polyol pathway, Exp. Eye Res. 50:563-573.

Nishimura, Y.C. (1998) Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications, Pharmacol. Rev. 50:21-34.

Sangeeta, R.K., and Ralph, A.D. (2007) The Insulin resistance syndrome: physiological considerations, Diabetes Vasc. Dis. Res. 4:13-19.

Collier, A., Wilson, R., Bradley, H., Thomson, J.A., and Small, M. (1990) Free radical activity in type 2 diabetes, Diabetes Med. 7:27-30.

Braynes, J.W. (1991) Role of oxidative stress in development of complications in diabetes, Diabetes. 40: 405-412.

Funke, I., and Melzig, M.F. (2006) Traditionally used plants in diabetes therapy–phytotherapeutics as inhibitors of α-amylase activity, Braz. J. Pharmacognosy. 16:1-5.

El-Beshbishy, H.A., and Bahashwan, S.A. (2012) Hypoglycemic effect of basil (Ocimum basilicum) aqueous extract is mediated through inhibition of α-glucosidase and α-amylase activities: An in vitro study, Toxicol. Ind. Health. 28(1):42-50.

Thorat, R., Vyawahare, N., Velis, H., and Chaudhari, S. (2010) Antidiabetic activity of HF on alloxan induced diabetic rats. Pharmacologyonline. 2:1089-99.

Wadood, A., Wadood, N., and Shah, S.A. (1989) Effects of Acacia arabica and Caralluma edulis on blood glucose levels of normal and alloxan diabetic rabbits, J. Pak. Med. Assoc. 39(8):208-212.

Kumar, G.P., Sudheesh, S., and Vijayalakshmi, N.R. (1993) Hypoglycemic effect of coccinia-indica - mechanism of action, Planta Med. 59(4):330-332.

Khan, B.A., Abraham, A., and Leelamma, S. (1995) Hypoglycemic action of Murraya koeingii (curry leaf) and Brassica juncea (mustard): mechanism of action, Indian. J. Biochem. Biophys. 32(2):106-108.

Das, A.V., Padayatti, P.S., and Paulose, C.S. (1996) Effect of leaf extract of Aegle marmelos (L.) Correa ex Roxb. on histological and ultrastructural changes in tissues of streptozotocin induced diabetic rats, Indian. J. Exp. Biol. 34(4):341-345.

Chattopadhyay, R.R. (1996) Possible mechanism of antihyperglycemic effect of Azadirachta indica leaf extract, Gen. Pharmacol. Part IV, 27(3):431-434.

Sachdewa, A., and Khemani, L.D. (1999) A preliminary investigation of the possible hypoglycemic activity of Hibiscus rosa-sinensis, Biomed. Environ. Sci. 12(3):222-226.

Aderibigbe, A.O., Emudianughe, T.S., and Lawal, B.A. (1999) Antihyperglycemic effect of Mangifera indica in rat, Phytother. Res. 13(6): 504-507.

Zhang, X.F., and Tan, B.K.H. (2000) Anti-diabetic property of ethanolic extract of Andrographis paniculata in streptozotocin-diabetic rats, Acta. Pharm. Sinica. 21(12):1157-1164.

Hannan, J.M.A., Rokeya, B., Faruque, O., Nahar, N., Mosihuzzaman, M., Khan, A.K.A. et al, (2003) Effect of soluble dietary fibre fraction of Trigonella foenum graecum on glycemic, insulinemic, lipidemic and platelet aggregation status of Type 2 diabetic model rats, J. Ethnopharmacol. 88(1):73–77.

Vats, V., Grover, J.K., and Rathi, S.S. (2002) Evaluation of anti-hyperglycemic and hypoglycemic effect of Trigonella foenum-graecum Linn, Ocimum sanctum Linn and Pterocarpus marsupium Linn in normal and alloxanized diabetic rats, J. Ethnopharmacol. 79(1):95-100.

Virdi, J., Sivakami, S., Shahani, S., Suthar, A.C., Banavalikar, M.M., and Biyani, M.K. (2003) Antihyperglycemic effects of three extracts from Momordica charantia, J. Ethnopharmacol. 88(1):107-111.

Prakash, P., and Gupta, N. (2005) Therapeutic uses of Ocimum sanctum Linn (tulshi) with a note on eugenol and its pharmacological actions: a short Review, Indian. J. Physio. Pharmacol. 49(2):125-131.

Tanaka, M., Misawa, E., Ito, Y., Habara, N., Nomaguchi, K., Yamada, M. et al. (2006) Identification of five phytosterols from aloe vera gel as anti-diabetic compounds, Biol. Pharm. Bull. 29(7):1418-1422.

Kumar, G.P.S., Arulselvan, P., Kumar, D.S., and Subramanian, S.P. (2006) Anti-diabetic activity of fruits of Terminalia chebula on streptozotocin induced diabetic rats, J. Health. Sci. 52(3):283-291.

Li, Y., Wen, S., Kota, B.P., Peng, G., Li, G.Q., Yamahara, J., and Roufogalis, B.D. (2005) Punica granatum flower extract, a potent alpha-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats, J. Ethnopharmacol. 99:239-244.

Mai, T.T., and Chuyen, N.V. (2007) Anti-hyperglycemic activity of an aqueous extract from flower buds of Cleistocalyx operculatus (Roxb.) Merr and Perry, Biosci. Biotechnol. Biochem. 71:69-76.

Nair, S.S., Kavrekar, V., and Mishra, A. (2013) In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts, European Journal of Experimental Biology, 3(1):128-132

Dabaghian, F.H., Kamalinejad, M., Shojaei, A., and Fard, M.A. (2012) Presenting anti-diabetic plants in Iranian traditional medicine, J. Diabetes Endocrinol. 3(5):70-76.

Toda, H., and Narita, K. (1967) Replacement of the essential calcium in Takaamylase A with other divalent cations, J. Biochem. (Tokyo) 62:767-768.

Wakim, J., Robinson, M., and Thoma, J.A. (1969) The active site of porcine pancreatic alpha amylase: Factors contributing to catalysis, Carbohydr. Res. 10:487-503.

Barapatre, A., Aadil K.R., Tiwary, B.N., Jha, H. (2015) In vitro antioxidant and antidiabetic activities of biomodified lignin from Acacia nilotica wood. Int J Biol Macromol. 75:81-89.

Kang, W., Song, Y., and Zhang, L. (2011) α-Glucosidase inhibitory and antioxidant properties and antidiabetic activity of Hypericum ascyron L., Med. Chem. Res. 20:809-816.

Lee, H.S. (2005) Cuminaldehyde: aldose reductase and α-glucosidase inhibitor derived from Cuminum cyminum L. seeds, J. Agric. Food Chem. 53:2446-2450.

Nickavar, B., and Yousefian, N. (2011) Evaluation of α-amylase inhibitory activities of selected antidiabetic medicinal plants, J. Verbr. Lebensm. 6:191-195.

Srivsatava, R., Srivastava, S.P., Jaiswal, N., Mishra, A., Maurya, R., and Srivastava, A.K. (2011) Antidiabetic and antidyslipidemic activities of Cuminum cyminum L. in validated animal models, Med. Chem. Res. 20:1656-1666.

Sudha, P., Zinjarde, S.S., Bhargava, S.Y., and Kumar, A.R. (2011) Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants, BMC Complement. Altern. Med. 11(5):1-10.

Misbah, H., Aziz, A.A., and Aminudin, N. (2013) Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions, BMC Complement. Altern. Med. 13(118):1-12.

Ahmed, D., Kumar, V., Sharma, M., and Verma, A. (2014) Target guided isolation, in-vitro antidiabetic, antioxidant activity and molecular docking studies of some flavonoids from Albizzia Lebbeck Benth. Bark, BMC Complement. Altern. Med. 14(155):1-12.

Giancarlo, S., Rosa, L.M., Nadjafi, F., and Francesco, M. (2006) Hypoglycaemic activity of two spices extracts: Rhus coriaria L. and Bunium persicum Boiss, Nat. Prod. Res. 20:882-886.

Ranjana, D.K., Tripathi, J., Tripathi, Y.B., and Tiwari, S., (2013) In-vitro α amylase and glycosidase inhibitory effect of ethanolic extract of antiasthmatic drug-Shirishadi, J Adv Pharm Technol Res. 4(4):206-209.

Harborne, J.B. (1973) Phytochemical Methods: A guide to modern techniques of plant analysis, Chapman and Hall, New York, pp 279.

Raaman, N. (2006) Phytochemical Techniques, New Indian Publishing Agencies, New Delhi, 2006: 19.

Kim, J.S., Kwon, C.S., and Son, K.H. (2000) Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid, Biosci. Biotechnol. Biochem. 64:2458-2461.

Mcdougall, G.J., and Stewart, D. (2009) The inhibitory effects of berry polyphenols on digestive enzymes, BioFactors. 23:189-195.

Kazeem, M.I., Dansu, T.V., and Adeola, S.A. (2013) Inhibitory effect of Azadirachta indica A. Juss leaf extract on the activities of α-amylase and α-glucosidase, Pak. J. Biol. Sci. 16(21):1358-1362.

Tong, W.Y., Wang, H., Waisundara, V.Y., and Huang, D. (2014) Inhibiting enzymatic starch digestion by hydrolyzable tannins isolated from Eugenia jambolana, LWT Food Sci. Technol. 59(1):389-395.

Mukherjee, S., Mitra, A., Dey, S., and Thakur, G. (2010) Alpha amylase activity of tannin isolated from Terminalia chebula, International Conference on Systems in Medicine and Biology (ICSMB), ISBN: 97-816-12840390, pp 443-445, IEEE Publisher, DOI: 10.1109/ICSMB.2010.5735421

Laube, H. (2002) Acarbose, Clin. Drug Investig. 22(3):1-4.

Lordan, S., Smyth, T.J., Soler-Vila, A., Stanton, C., and Ross, R.P. (2013) The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts, Food Chem. 141:2170-2176.

Biswas, M., Dey, S., and Sen, R. (2013) Betalains from Amaranthus tricolor L., Journal of Pharmacogn. Phytochem. 1(5):87-95.

Ashok Kumar, B.S., Lakshman, K., Nandeesh, R., Arun Kumar, P.A., Manoj, B., Kumar, V., and Shekar, D.S. (2011) In vitro alpha-amylase inhibition and in vivo antioxidant potential of Amaranthus spinosus in alloxan-induced oxidative stress in diabetic rats, Saudi J. Biol. Sci. 18:1-5.

Jou, H.J., Lin, Y.M., Lin, Y.C., and Chen, F.C. (1979) Constituents of Alternanthera sessilis R. Br Huaxue 1:22–25.

Sinha, P., Arora, V.K., and Wahi, S.P. (1984) Chemical investigation on Alternanthera sessilis. Indian Drugs 21:139–140.

Mondal, H., Hossain, H., Awang, K., Saha, S., Rashid, S.M.U., Islam, M.K., Rahman, M.S., Jahan, I.A., Rahman, M.M., and Shilpi, J.A. (2015) Anthelmintic activity of ellagic acid, a major constituent of Alternanthera sessilis against Haemonchus contortus. Pak Vet J. 35(1):58-62.

Rao, K.V.R., Sambasiva Rao, K.R.S., Nelson, R., Nagaiah, K., and Reddy, V.J.S. (2011) Hypoglycemic and anti diabetic effect of Alternanthera sessilis in normal and streptozotocin (STZ)-induced rat, Journal of Global Trends in Pharmaceutical Sciences. 2(3):325-335.

Jadhav, R., and Puchchakayala, G. (2011) Hypoglycemic and antidiabetic activity of flavonoids: boswellic acid, ellagic acid, quercetin, rutin on streptozotocin-nicotinamide induced type2 diabetic rats, Int J Pharm Pharm Sci, 4(2):251-256.

Kumar, P., Mehta, M., Satija, S., and Garg, M. (2013) Enzymatic in vitro anti-diabetic activity of few traditional Indian medicinal plants, J. Biol. Sci. 13(6):540-544.

Augusti, K.T. (1973) Studies on the effects of a hypoglycemic principle from Allium cepa Linn, Indian J. Med. Res. 61:1066-1071.

Patumraj, S., Tewit, S., Amatyakul, S., Jaryiapongskul, A., Maneesri, S., Kasantikul, V., et al. (2000) Comparative effects of garlic and aspirin on diabetic cardiovascular complications, Drug Deliv. 7:91-96.

Nickavar, B., and Yousefian, N. (2011) Evaluation of a-amylase inhibitory activities of selected antidiabetic medicinal plants, J. Verbr. Lebensm. 6:191–195.

Dineshkumar, B., Mitra, A., and Manjunatha, M. (2010) A comparative study of alpha amylase inhibitory activities of common anti-diabetic plants at Kharagpur 1 block, International Journal of Green Pharmacy. 115-121.

Wu, H., and Xu, B. (2013) Inhibitory Effects of Onion Against α-Glucosidase Activity and its Correlation with Phenolic Antioxidants, International Journal of Food Properties, DOI: 10.1080/10942912.2012.654562.

McDougall, G.J., Shpiro, F., Dobson, P., Smith, P., Blake, A., and Stewart, D. (2005) Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase, J. Agric. Food Chem. 53: 2760−2766.

Wang, H., Du, Y. J., and Song, H. C. (2010). α-Glucosidase and α-amylase inhibitory activities of guava leaves, Food Chem. 123:6–13.

Grussu, D., Stewart, D., and McDougall, G.J. (2011) Berry polyphenols inhibit α-Amylase in vitro: identifying active components in Rowanberry and Raspberry, J. Agric. Food Chem. 59:2324–2331.

Luo, H., Wang, L.F., Imoto, T., and Hiji, Y. (2001) Inhibitory effect and mechanism of acarbose combined with gymnemic acid on maltose absorption in rat intestine, World J. Gastroentero. 7(1), 9-15.

Klip, A., and Leiter, L.A. (1990) Cellular Mechanism of Action of Metformin, Diabetes Care. 13:696-704.

Viollet, B., Guigas, B., Garcia, N.S., Leclerc, J., Foretz, M., and Andreelli, F. (2012) Cellular and molecular mechanisms of metformin: an overview, Clin Sci (Lond). 122(6):253-270.

Rena, G., Pearson, E.R., and Sakamoto, K. (2013) Molecular mechanism of action of metformin: old or new insights, Diabetologia. 56:1898-1906.

Pernicova, I., and Korbonits, M. (2014) Metformin - mode of action and clinical implications for diabetes and cancer, Nat. Rev. Endocrinol. 10:143-156.

Shankaraiah, P., and Reddy, Y.N. (2011) α-amylase expressions in Indian type-2 diabetic patients, J. Med. Sci. 11(7):280-284.

Kazeem, M.I., Adamson, J.O., and Ogunwande, I.A. (2013) Modes of Inhibition of ð›¼-Amylase and ð›¼-Glucosidase by Aqueous Extract of Morinda lucida Benth Leaf, BioMed. Res. Int. 2013, Article ID 527570, 6 pages.

Manikandan, R., Anand, A.V., and Muthumani, G.D. (2013) Phytochemical and in vitro anti-diabetic activity of methanolic extract of Psidium guajava leaves, Int. J. Curr. Microbiol. App. Sci. 2(2), 15-19.

Andrade-Cetto, A., Becerra-Jiménez, J., and Cárdenas-Vázquez, R. (2008) Alpha-glucosidase- inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes, J. Ethnopharmacol. 116, 27-32.

Shai, L.J., Masoko, P., Mokgotho, M.P., Magano, S.R., Mogale, A.M., Boaduo, N., and Eloff, J.N. (2010) Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa, South Africa, S. Afr. J. Bot. doi:10.1016/j.sajb.2010.03.002.

Narkhede, M.B., Ajimire, P.V., Wagh, A.E., Mohan, M., and Shivashanmugam, A.T. (2011) In vitro anti-diabetic activity of Caesalpina digyna (R.) methanol root extract, Asian Journal of Plant Science and Research. 1(2), 101-106.

Ong, K.C., and Khoo, H.E. (1997) Biological effects of myricetin, Gen. Pharmacol. 29, 121-126.

Kamalakkannan, N., and Prince, P.S.M. (2006) Rutin improves the antioxidant status in streptozotocin-induced diabetic rat tissues, Mol. Cell. Biochem. 293, 211-219.

Wang, S.Y., Camp, M.J., and Ehlenfeldt, M.K. (2012) Antioxidant capacity and α-glucosidase inhibitory activity in peel and flesh of blueberry (Vaccinium spp.) cultivars, Food Chem. 132, 1759−1768.

Kamalakkanan, N., Rajadurai M., and Prince P.S.M. (2003) Effect of Aegle marmelos fruits on normal and streptozotocin diabetic Wistar rats. J. Med. Food, 6:93-98.

Ugwoke, C.E.C., and Ezugwe, C.O. (2010) Phytochemical screening and proximate composition and onion bulb (Allium cepa L), Journal of Pharmaceutical and Allied Sciences. http://dx.doi.org/10.4314/jophas.v7i2.63397.

Hovana, E.K., James, U.S., James, E., Egbobor, E.M., Egba, A.G., Eta, E.S., and Nwakaku, O.A. (2011) Antibacterial and Phytochemical Studies of Allium Sativum, New York Science Journal. 4(4):123-128.

Obaineh, O.M., and Shadrach, A. (2013) Phytochemical constituents and medicinal properties of different extracts of Anacardium Occidentale and Psidium Guajava, Asian Journal of Biomedical and Pharmaceutical Sciences. 3(16):20-23.

Published

01-06-2016

How to Cite

Firdhouse m, J., & P, L. (2016). ASSESSMENT OF α- AMYLASE INHIBITORY ACTION OF SOME EDIBLE PLANT SOURCES. Innovare Journal of Sciences, 4(3), 1–7. Retrieved from https://innovareacademics.in/journals/index.php/ijs/article/view/9838

Issue

Section

Original Article(s)