Meenakshi Bhattacharjee




Pharmaceutically valuable products from micro algae and its industrial commercialization today is still in its infancy and can be seen as a gateway to a multibillion dollar industry. Microalgae generally grow autotrophically and are ubiquitous in nature.They represent a major untapped resource of genetic potential for valuable bioactive agents and fine biochemical. This proven ability of microalgae to produce these compounds places these microorganisms in the biotechnological spotlight for applications and commercialization as in the Pharmaceutical industry. The production of microalgal metabolites, which stimulate defense mechanisms in the human body, has spurred intense study of the application of micro algal biomass and products thereof in various food preparations, pharmacological and medical products. There is therefore a huge scope for further study of the identified algal compounds and their activities in the treatment and prevention of various diseases, in addition to an ongoing search for other, as yet undetected, metabolites.


Key words:Algae,Pharmaceuticals, Bioactive compounds.

| PDF |


Plaza M, Santoyo S, Jaime L, García-Blairsy Reina G, Herrero M, Señoráns FJ, et al. Screening for bioactive compounds from algae. J Pharm Biomed Anal 2010;51(2):450-5.

Herrero M, Castro-Puyana M, Mendiola JA, Ibañez E. Compressed fluids for the extraction of bioactive compounds. Trends Anal Chem 2013;43:67-83.

Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012;75(3):311-35.

Bhagavathy S, Sumathi P, Jancy I, Bell S. Green algae Chlorococcum humicola - A new source of bioactive compounds with antimicrobial activity. Asian Pac J Trop Biomed 2011;1:S1-7.

Priyadarshani I, Rath B. Commercial and industrial applications of micro algae - A review. J Algal Biomass Util 2012;3(4):89-100.

Volk RB. A newly developed assay for the quantitative determination of antimicrobial (anticyanobacterial) activity of both hydrophilic and lipophilic test compounds without any restriction. Microbiol Res 2008;163(2):161-7.

Smee DF, Bailey KW, Wong MH, O’Keefe BR, Gustafson KR, Mishin VP, et al. Treatment of influenza A (H1N1) virus infections in mice and ferrets with cyanovirin-N. Antiviral Res 2008;80(3):266-71.

Ibañez E, Cifuentes A. Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric 2013;93(4):703-9.

Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol Adv 2013;31(8):1532-42.

Harun R, Singh M, Forde GM, Danquah MK. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 2010;14(3):1037-47.

Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2006;23(1):26-78.

Mayer AM, Hamann MT. Marine pharmacology in 2001--2002: Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2005;140(3-4):265-86.

Rodríguez-Meizoso I, Jaime L, Santoyo S, Cifuentes A, García-Blairsy Reina G, Señoráns FJ, et al. Pressurized fluid extraction of bioactive compounds from Phormidium species. J Agric Food Chem 2008;56(10):3517-23.

Carvalho LR, Coata-Neves A, Conserva GA, Brunetti RL,

Hentschke GS, Malone CFS, et al. Biologically active compounds from cyano bacteria extracts: In vivo and in vitro aspects. Braz J Pharmacogn 2013;23(3):471-80.

Palavra AM, Coelho JP, Barroso JG, Rauter AP, Fareleira JM, Mainar A, et al. Supercritical carbon dioxide extraction of bioactive compounds from microalgae and volatile oils from aromatic plants. J Supercrit Fluids 2011;60:21-7.

Nobre B, Marcelo F, Passos R, Palavra A, Gouveia L, Mendes R. Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. Eur Food Res Technol 2006;223(6):787-90.

Mendes RL, Reis AD, Palavra AF. Supercritical CO2 extraction of γ-linolenic acid and other lipids from Arthrospira (Spirulina) maxima: Comparison with organic solvent extraction. Food Chem 2006;99(1):57-63.

Rastogi RP, Sinha RP. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 2009;27(4):521-39.

Semary NA. The characterization of bioactive compounds from an Egyptian Leptolyngbya sp. Strain. Ann Microbiol 2012;62(1):55-9.

Ambrosi MA, Reinehr CO, Bertolin TE, Costa JA, Colla LM. Propriedades de saúde de Spirulina spp. Rev Ciên Farmacêuticas Básica Apli 2008;29(2):109-17.

Colla LM, Oliveira Reinehr C, Reichert C, Costa JA. Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour Technol 2007;98(7):1489-93.

Colla LM, Muccillo-Baisch AL, Vieira Costa JA. Spirulina platensis effects on the levels of total cholesterol, HDL and triacylglycerols in rabbits fed with a hypercholesterolemic diet. Braz Arch Biol Technol 2008;51(2):405-11.

Torres-Duran PV, Ferreira-Hermosillo A, Juarez-Oropeza MA. Antihyperlipemic and antihypertensive effects of Spirulina maxima in an open sample of Mexican population: A preliminary report. Lipids Health Dis 2007;6:33.

Temina M, Rezankova H, Rezanka T, Dembitsky VM. Diversity of the fatty acids of the Nostoc species and their statistical analysis. Microbiol Res 2007;162(4):308-21.

Boyd MR, Gustafson KR, McMahon JB, Shoemaker RH, O’Keefe BR, Mori T, et al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: Potential applications to microbicide development. Antimicrob Agents Chemother 1997;41(7):1521-30.

Wang M, Xu YN, Jiang GZ, Li LB, Kuang TY. Membrane lipids and their fatty acid composition in Nostoc flagelliforme cells. Acta Bot Sin 2000;42(12):1263-6.

Deng Z, Hu Q, Lu F, Liu G, Hu Z. Colony development and physiological characterization of the edible blue-green alga, Nostoc sphaeroides (Nostocaceae, Cyanophyta). Progress Nat Sci 2008;18(12):1475-84.

Costa JA, Morais MG. Microalgae for food production. In: Soccol CR, Pandey A, Larroche C, editors. Fermentation Process Engineering in the Food Industry. Boca Raton, USA: Taylor & Francis; 2013. p. 486.

Costa JA, Radmann EM, Cerqueira VS, Santos GC, Calheiros MN. Fatty acids from the microalgae Chlorella vulgaris and Chlorella minutissima grown under different conditions. Alimentos Nutr Araraquara 2006;17(4):429-436.

Plaza M, Herrero M, Cifuentes A, Ibáñez E. Innovative natural functional ingredients from microalgae. J Agric Food Chem 2009;57(16):7159-70.

Cha KH, Kang SW, Kim CY, Um BH, Na YR, Pan CH. Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J Agric Food Chem 2010;58(8):4756-61.

Kokou F, Makridis P, Kentouri M, Divanach P. Antibacterial activity in microalgae cultures. Aquac Res 2012;43(10):1520-7.

Li L, Li W, Kim YH, Lee YW. Chlorella vulgaris extract ameliorates carbon tetrachloride-induced acute hepatic injury in mice. Exp Toxicol Pathol 2013;65(1-2):73-80.

Medina-Jaritz NB, Carmona-Ugalde LF, Lopez-Cedillo JC, Ruiloba-De Leon FS. Antibacterial activity of methanolic extracts from Dunaliella salina and Chlorella vulgaris. FASEB J 2013;27:638-10.

Zhao L, Sweet BV. Lutein and zeaxanthin for macular degeneration. Am J Health Syst Pharm 2008;65(13):1232-8.

Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng 2006;101(2):87-96.

Rösch C, Posten C. Challenges and perspectives of microalgae production. Tech Theor Prax 2012;21:1.

Francavilla M, Trotta P, Luque R. Phytosterols from Dunaliella tertiolecta and Dunaliella salina: A potentially novel industrial application. Bioresour Technol 2010;101(11):4144-50.

Madkour FF, Abdel-Daim MM. Hepatoprotective and antioxidant activity of Dunaliella salina in paracetamol-induced acute toxicity in rats. Indian J Pharm Sci 2013;75(6):642-8.

Chang T, Ohta S, Ikegami N, Miyata H, Kashimoto T, Kondo M. Antibiotic substances produced by a marine green alga, Dunaliella primolecta. Bioresour Technol 1993;44(2):149-53.

Hosseini Tafreshi A, Shariati M. Dunaliella biotechnology: Methods and applications. J Appl Microbiol 2009;107(1):14-35.

Herrero M, Jaime L, Martín-Alvarez PJ, Cifuentes A, Ibáñez E. Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids. J Agric Food Chem 2006;54(15):5597-603.

León R, Martín M, Vigara J, Vilchez C, Vega JM. Microalgae mediated photoproduction of beta-carotene in aqueous-organic two phase systems. Biomol Eng 2003;20(4-6):177-82.

García-González M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG. Production of Dunaliella salina biomass rich in 9-cis-beta-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 2005;115(1):81-90.

Kleinegris DM, Janssen M, Brandenburg WA, Wijffels RH. Continuous production of carotenoids from Dunaliella salina. Enzyme Microb Technol 2011;48(3):253-9.

Stolz P, Obermayer B. Manufacturing microalgae for skin care. Cosmetics & toiletries. Sci Appl 2005;120:99-106.

Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 2007;102(3):771-6.

Mata TM, Martins AA, Caetano NA. Microalgae for biodiesel production and other applications: A review. Renew Sustain Energy Rev 2010;14(1):217-32.

Gupta A, Sainis JK. Isolation of C-phycocyanin from Synechococcus sp., (Anacystisnidulans BD1). J Appl Phycol 2010;22(3):231-3.

Viskari PJ, Colyer CL. Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Anal Biochem 2003;319(2):263-71.

Bermejo Román R, Alvárez-Pez JM, Acién Fernández FG, Molina Grima E. Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 2002;93(1):73-85.

Arad SM, Levy-Ontman O. Red microalgal cell-wall polysaccharides: Biotechnological aspects. Curr Opin Biotechnol 2010;21(3):358-64.

Kim M, Yim JH, Kim SY, Kim HS, Lee WG, Kim SJ, et al. In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antiviral Res 2012;93(2):253-9.

Amaro HM, Guedes AC, Malcata FX. Antimicrobial activities of microalgae: An invited review. In: Méndez-Vilas A, editor. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. Badajoz: Formatex Research Center; 2011. p. 1272-80.

Smelcerovic A, Knezevic-Jugovic Z, Petronijevic Z. Microbial polysaccharides and their derivatives as current and prospective pharmaceuticals. Curr Pharm Design 2008;14(29):3168-95.

Raposo MF, de Morais AM, de Morais RM. Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci 2014;101(1-2):56-63.

Smith VJ, Desbois AP, Dyrynda EA. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs 2010;8(4):1213-62.

Steffens D, Leonardi D, Soster PR, Lersch M, Rosa A, Crestani T, et al. Development of a new nanofiber scaffold for use with stem cells in a third degree burn animal model. Burns 2014;40(8):1650-60.

de Morais MG, Stillings C, Dersch R, Rudisile M, Pranke P, Costa JA, et al. Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresour Technol 2010;101(8):2872-6.

Steffens D, Lersch M, Rosa A, Scher C, Crestani T, Morais MG, et al. A new biomaterial of nanofibers with the microalga Spirulina as scaffolds to cultivate with stem cells for use in tissue engineering. J Biomed Nanotechnol 2013;9(4):710-8.

Barrow C, Shahidi F. Marine Nutraceuticals and Functional Foods. Boca Raton, FLA, USA: CRC Press, Taylor & Francis; 2008.

Khan MN, Cho JY, Lee MC, Kang JY, Park NG, Fujii H, et al. Isolation of two anti-inflammatory and one pro-inflammatory polyunsaturated fatty acids from the brown seaweed Undaria pinnatifida. J Agric Food Chem 2007;55(17):6984-8.

Matsui MS, Muizzuddin N, Arad S, Marenus K. Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo. Appl Biochem Biotechnol 2003;104(1):13-22.

Bhat VB, Madyastha KM. Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: Protection against oxidative damage to DNA. Biochem Biophys Res Commun 2001;285(2):262-6.

Schepetkin IA, Quinn MT. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 2006;6(3):317-33.

Park JK, Kim ZH, Lee CG, Synytsya A, Jo SH, Kim SO, et al. Characterization and immunostimulating activity of a water-soluble polysaccharide isolated from Haematococcus lacustris. Biotechnol Bioprocess Eng 2011;16(6):1090-8.

Kang SM, Heo SJ, Kim KN, Lee SH, Jeon YJ. Isolation and identification of new compound, 2,7″-phloroglucinol-6,6′-bieckol from brown algae, Ecklonia cava and its antioxidant effect. J Funct Foods 2012;4(1):158-66.

Pangestuti R, Kim SK. Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods 2011;3(4):255-66.

Abd El-Baky HH, El Baz FK, El-Baroty GS. Production of phenolic compounds from Spirulina maxima microalgae and its protective effects. Afr J Biotechnol 2009;8(24):7059-67.

Vílchez C, Forján E, Cuaresma M, Bédmar F, Garbayo I, Vega JM. Marine carotenoids: Biological functions and commercial applications. Mar Drugs 2011;9(3):319-33.

About this article







Additional Links

Manuscript Submission


Asian Journal of Pharmaceutical and Clinical Research
Vol 9 Issue 6 November 2016 Page: 43-47

Print ISSN


Online ISSN


Authors & Affiliations

Meenakshi Bhattacharjee

Article Tools

Email this article (Login required)
Email the author (Login required)


  • There are currently no refbacks.